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Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory
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Time-dependent orbital-free density functional theory is an efficient ab initio method for calculating the
electronic dynamics of large systems. In comparison to standard time-dependent density functional theory, it
computes only a single electronic state regardless of system size, but it requires an additional time-dependent
Pauli potential term. We propose a nonadiabatic and nonlocal Pauli potential whose main ingredients are the
time-dependent particle and current densities. Our calculations of the optical spectra of metallic and semicon-
ductor clusters indicate that nonlocal and nonadiabatic time-dependent orbital-free density functional theory
performs accurately for metallic systems and semiquantitatively for semiconductors. This paper opens the door
to wide applicability of time-dependent orbital-free density functional theory for nonequilibrium electron and
electron-nuclear dynamics of complex materials.
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I. INTRODUCTION

The ab initio simulation of nanoscale quantum systems
when their electrons are out of equilibrium is a challenging
task [1–5], not only for time-dependent density functional
theory (TD-DFT) but for almost all other electronic structure
methods. One of the challenges is the computational cost
involved in the simulations, which compounds on top of the
already challenging computation of the ground state. In DFT
and TD-DFT, the computational expense typically scales cubi-
cally with system size, and for wave-function-based methods
the cost is even higher [6]. The ab initio methods currently
available are thus not suited to address systems relevant to
most experiments (where typical sizes of, for example, nan-
oclusters are in the range of 1 to 1000 nm [7–9]). Clearly,
alternative methods are needed. Several research groups are
actively working to tackle this issue by developing such meth-
ods as the semiempirical time-dependent density functional
tight binding (TD-DFTB) [10], the simplified TD-DFT [11],
and other methods more loosely rooted in quantum mechan-
ics [12–17]. In this paper, we further the time-dependent
orbital-free density functional theory (TD-OFDFT), an
ab initio method with potentially far reduced computational
cost compared to TD-DFT and even TD-DFTB.

TD-OFDFT tackles the scaling problem by only consid-
ering a single active orbital. In contrast, TD-DFT uses a
number of orbitals equal to the number of electrons in the
system. Thus, TD-OFDFT can achieve a linear computational
scaling with the number of electrons so long as approxi-
mate functionals are used. In addition to the time-dependent
exchange-correlation (XC) potential that also needs to be
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approximated in TD-DFT [18], TD-OFDFT requires us to ap-
proximate the time-dependent Pauli potential [19–23]. Thus,
the main challenge is to find a good approximation to this
potential.

Early adoptions of TD-OFDFT utilize adiabatic and lo-
cal density approximations, i.e., the adiabatic Thomas-Fermi
[24,25] potential as the time-dependent Pauli potential, some-
times referred to as time-dependent Thomas-Fermi [26–28]
or hydrodynamic DFT [29–32]. Such a simple approximation
has been successful for systems such as Na clusters [27]
but only qualitatively captures the spectra for other types of
systems [29,33,34]. As we will show in this paper, for TD-
OFDFT to be semiquantitative for a wide class of systems, the
approximate time-dependent Pauli potential must be nonlocal
and nonadiabatic [35–38].

To account for nonlocality, several nonlocal kinetic en-
ergy density functionals have been developed for ground state
OFDFT [39–41]. These can be employed in TD-OFDFT by
applying the so-called adiabatic approximation (i.e., the po-
tentials are given by their ground-state expressions evaluated
at the time-dependent electron density). To account for nona-
diabaticity (i.e., going beyond the adiabatic approximation),
potentials need to depend on the time-dependent electron
density and at least the current density [18,20,42,43]. Along
these lines of research, in this paper we derive an improved
nonadiabatic correction to the time-dependent Pauli potential
from a frequency-dependent Pauli kernel derived from the
response of the free electron gas which we recently proposed
[19].

Another challenge for TD-OFDFT has been the general
lack of software that implements it. We recently filled this
gap by developing DFTPY [34], an object-oriented PYTHON

software for OFDFT as well as real-time and linear-response
(Casida [44]) TD-OFDFT. DFTPY is fully parallelized using
MPI4PY [45], and scales well with system size as we showed
in Ref. [34].
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This paper is structured as follows. In Sec. II, we briefly in-
troduce the formalism of TD-OFDFT and derive the proposed
nonadiabatic correction to the time-dependent Pauli potential
from the frequency-dependent Pauli kernel. Section III lays
out the computational details. In Sec. IV we present the op-
tical spectra derived from real-time TD-OFDFT simulations
carried out in a linear-response regime (weak perturbation)
of several representative metallic and semiconductor systems.
And, finally, in the Appendix, we discuss the implementation
of the nonadiabatic Pauli potential in DFTPY.

II. FORMALISM

A. Time-dependent Schrödinger-like equation for TD-OFDFT

In this section, we provide a brief introduction to the
formalism behind TD-OFDFT. For more details, we refer
the readers to Refs. [19,20,46]. In TD-OFDFT, one-to-one
invertible maps are established between the real system of
interacting electrons, the fictitious system of noninteracting
electrons (aka the KS system), and a fictitious system of non-
interacting bosons. The bosonic system yields the following
density-wave-function relationship:

n(r, t ) = N |φB(r, t )|2, (1)

where φB(r, t ) is a normalized bosonic wave function, N is the
number of electrons in the system. Thoughout, the subscrip-
tion B stands for bosonic system.

In this paper, we only consider systems at zero temperature.
In a typical setup for real-time propagations, the system starts
with its ground-state density n0(r) and at t = 0 the system is
perturbed out of equilibrium. A time-dependent Schrödinger-
like equation is employed to propagate the system for t > t0
(atomic units are used throughout this paper):[

−∇2

2
+ vB[n](r, t )

]
φB(r, t ) = i

∂

∂t
φB(r, t ). (2)

When optical spectra are sought, the typical initial condition
is

φB(r, t0) = 1√
N

√
n0(r)eik·r, (3)

where the exponential term eik·r effectively donates momen-
tum of strength k = |k| along the direction of vector k to the
electronic system as the initial, weak perturbation [47].

The time-dependent effective potential is given by

vB[n](r, t ) = vP[n](r, t ) + vS[n](r, t ), (4)

where vP[n](r, t ) is the time-dependent Pauli potential, which
is the difference between the bosonic noninteracting kinetic
potential and the fermionic one, and vS[n](r, t ) is the time-
dependent KS potential. Such a decomposition of the effective
potential acting on the bosonic system is borrowed from the
ground-state decomposition of the noninteracting kinetic en-
ergy, Ts[n], namely,

TS[n] = TvW[n] + TP[n], (5)

where TvW[n] is the von Weizsäcker kinetic energy (i.e., the
kinetic energy of a set of noninteracting bosons in their ground
state) and TP[n] is the Pauli kinetic energy. It is said that the

Pauli potential introduces the effects of the Pauli exclusion
principle in the bosonic electronic structure of Eq. (2).

The corresponding adiabatic approximation for the Pauli
potential is given by the functional derivative of the Pauli en-
ergy evaluated at the time-dependent electron density, namely,

vad
P (r, t ) = δTP[n0]

δn0(r)

∣∣∣∣
n0(r)→n(r,t )

. (6)

However, to achieve accurate results in TD-OFDFT, the nona-
diabatic contribution to the potential should not be neglected.
Therefore, the total Pauli potential can be represented as the
adiabatic portion plus a nonadiabatic correction:

vP(r, t ) = vad
P (r, t ) + vnad

P (r, t ). (7)

The nonadiabatic contribution to the Pauli potential has
much stronger effects on the electron dynamics compared
to the nonadiabatic contribution to the XC potential [18].
The latter needs to bridge the dynamics of N noninteracting
electrons with the one of N interacting electrons. Thus, states
described by so-called double excitations and beyond need to
be accounted for by the nonadiabatic XC term. In contrast,
the nonadiabatic contribution to the Pauli potential needs to
bridge the dynamics of N noninteracting bosonic electrons
to the one of N noninteracting fermionic electrons, therefore
it needs to create all those excitations that are missing when
exciting a single effective electron in comparison to exciting
N fermionic electrons. We expect the nonadiabaticity in the
Pauli potential to be very strong and to account for qualita-
tive aspects of the electronic response. This, in fact, was the
essence of our recent work [19] which focused on the first
excited state of selected systems.

B. Approximating the nonadiabatic Pauli potential

In this section, we will derive a nonadiabatic correction
to the Pauli potential from a nonadiabatic Pauli kernel devel-
oped by us previously [19]. In that study, we derived a Pauli
kernel relying on the Dyson equation connecting the bosonic
response, χB, with the Kohn-Sham response, χS,

χ−1
B (r, r′, ω) − χ−1

S (r, r′, ω) = fP(r, r′, ω). (8)

By substituting in Eq. (8), the frequency-dependent Lindhard
function for χS and the response of a free boson gas for χB,
one obtains an expression for fP which can be expanded in
terms of unitless variables, η̄ = q

2kF
, ω̄ = ω

qkF
, γ̄ = η

qkF
, where

q is the conjugate variable to |r − r′|, ω is the frequency of the
external time-dependent perturbation, and η is the broadening
parameter introduced to implement causality [48].

Retaining terms up to the first order of ω and discarding
the adiabatic part which is frequency independent,

f nad
P (r, q, ω) = iπ3

12

(
6

k2
F (r)q

+ q

k4
F (r)

)
ω, (9)

where the local density approximation for the Fermi wave
vector is introduced, kF (r) = (3π2n(r))1/3.

We now use the nonadiabatic Pauli kernel to approximate
the nonadiabatic correction to the time-dependent Pauli po-
tential adopting the same technique as described in Ref. [20].
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FIG. 1. Optical spectrum of the Mg8 cluster (see inset for a snapshot of the structure). LMGP is a nonlocal kinetic energy functional with
density dependent kernel [41] employed in the adiabatic approximation (i.e., vP(t ) � vP[n0 = n(t )]). LMGP + JP stands for adiabatic LMGP
augmented by the additional propagation step with the nonadiabatic potential in Eq. (15).

Considering the continuity equation

∂n(r′, t )

∂t
= −∇ · j(r′, t ), (10)

and expanding the density at t ′ around time t up to the first
order, we obtain

δn(r′, t ′) ≈ δn(r′, t ) + ∂n(r′, t )

∂t
(t − t ′)

= δn(r′, t ) − ∇ · j(r′, t )(t − t ′). (11)

Using the definition of the Pauli kernel,

fP(r, r′, t − t ′) = δvP(r, t )

δn(r′, t ′)
, (12)

we can write the variation of the Pauli potential as

δvP(r, t ) =
∫

dr′
∫

d (t − t ′)δn(r′, t ′) fP(r, r′, t − t ′). (13)

When plugging Eq. (11) into Eq. (13), we note that the
δn(r′, t ) term in Eq. (11) only depends on the density at time
t and therefore yields the adiabatic part of the Pauli potential.
From the second term of Eq. (11), we derive the nonadiabatic
part of the Pauli potential,

vnad
P (r, t )

= −
∫

dr′ ∇ · j(r′, t )
∫

d (t − t ′)(t − t ′) fP(r, r′, t − t ′)

= −
∫

dr′ ∇ · j(r′, t )
−i∂ fP(r, r′, ω)

∂ω

= −F−1

{
iq · j(q, t )

−i∂ fP(q, ω)

∂ω

}
, (14)

where F−1{·} represents inverse Fourier transform in the
space domain.

We immediately clarify that Eq. (14) is approximate—not
only because the time-dependent density is expanded only
to first order but, most importantly, because the recovered
quantity is not vnad

P but its first-order variation δvnad
P . Formally,

a procedure of functional integration should be employed

which, unlike the static case [40,49,50], is not straightforward
in the time domain.

Finally, we plug Eq. (9) into Eq. (14) and note that the
derivative of the adiabatic contribution of fP with respect to
ω vanishes; we obtain

vnad
P (r, t ) = −π3

12

(
6

k2
F (r)

F−1

{
iq · j(q, t )

1

q

}

+ 1

k4
F (r)

F−1{iq · j(q, t )q}
)

. (15)

We note that Eq. (15) corrects the potential proposed by White
et al. [20] with the addition of a second term. As our calcula-
tions will demonstrate, the second term of Eq. (15) is key to
achieving accurate results and thus should not be neglected.

III. COMPUTATIONAL DETAILS

The TD-OFDFT calculations are performed with DFTPY

[34] and the benchmark TD-DFT calculations are performed
with embedded QUANTUM ESPRESSO’s TD-DFT implemen-
tation [51–53]. All TD-OFDFT and TD-DFT calculations
employ the same adiabatic Perdew-Zunger local density ap-
proximation (LDA) [54] as the XC functional and OEPP [55]
pseudopotentials unless otherwise stated. The kinetic energy
cutoff for the TD-DFT wave functions and the TD-OFDFT
density are chosen to converge the ground-state energy within
1 meV/atom. The oscillator strength is calculated using
σ (ω) = −ωIm[ δμ̃(ω)

k ], where δμ̃(ω) is the Fourier transform
of the dipole moment change calculated at every time step
of the propagation and k is the kick strength mentioned in
Eq. (3). The kick strength k = 1.0 × 10−3 a.u. is used for
all calculations. The time step chosen is consistent with the
plane-wave cutoff employed and is dt = 0.1 a.u. in all sim-
ulations, except for Ag, Si, and GaAs simulations with the
Local-kF Mi-Genova-Pavanello (LMGP) functional, where
the time step is dt = 0.01 a.u.

IV. RESULTS AND DISCUSSION

To test the regime of applicability of TD-OFDFT, we must
carry out proof of principle simulations on an array of possible
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FIG. 2. Optical spectrum of the Mg50 cluster. See caption to Fig. 1 for additional details.

electronic structures. For sake of simplicity, in this paper we
target the optical spectrum as observable and we focus on
clusters from small sizes (eight atoms) to medium sizes (up
to about 300 atoms). The ability to predict optical spectra
tests how well the electronic-structure method reproduces the
linear response function of the electronic system, and with that
it probes the energy levels and transition dipole moments. The
most appropriate benchmark is standard TD-DFT—a method
that employs the exact Pauli potential. Therefore, any devia-
tion in the shape of the spectral envelope or the peak positions
from TD-DFT are directly ascribed to the errors introduced by
the approximate Pauli potential employed in TD-OFDFT.

For this test, we choose clusters of three metallic systems
(Mg, Na, Ag) and two semiconducors (Si, GaAs). We have
previously showed that nonlocal OFDFT is able to reproduce
well the electronic structure of these systems in their ground
state [41]. However, functionals that behave well for ground
states may not provide an equally accurate description when
going to the time domain—the reason being the need in prac-
tical calculations to involve the adiabatic approximation when
evaluating the density-dependent potentials.

In all figures presented in this section, we indicate by
LMGP the inclusion of adiabatic nonlocal Pauli potential by
simply evaluating the optical spectra with the nonlocal LMGP
kinetic energy functional using the adabatic approximation
[i.e., at every time t we evaluate its potential at the time-

dependent density, n(r, t ), as shown in Eq. (6)]. LMGP + JP
instead, indicates that in addition to LMGP we add the nona-
diabatic contribution derived in Eq. (15).

A. Metallic systems

Previously [34], we investigated the TD-OFDFT optical
spectra of Mg clusters with the adiabatic Thomas-Fermi ap-
proximation for the Pauli potential (TFW here onward). Our
results showed that TFW could approach the TD-DFT result
only qualitatively. Figure 1 shows that TD-OFDFT can reach
quantitative agreement with TD-DFT provided nonlocality
(with the LMGP kinetic energy functional) and nonadiabatic-
ity (adding to LMGP the nonadiabatic contributions to the
Pauli potential) are included.

The effect on the optical spectrum of Mg8 of including
nonlocality in the Pauli potential is very strong. TFW sig-
nificanlty redshifts the first absorption band compared to the
benchmark TD-DFT results. Accounting for nonlocality in
the Pauli potential brings the spectrum much closer to the
TD-DFT benchmark. However, the spectral envelope is not
recovered fully. When the nonadiabatic correction is included,
then TD-OFDFT recovers the TD-DFT spectral envelope de-
spite slightly increasing the spectral weights in the tail of
the spectrum at high energies, depleting of intensity the main
spectral features.

FIG. 3. Optical spectrum of the Na55 cluster. See caption to Fig. 1 for additional details.
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FIG. 4. (a) Agn nanorod building block. (b) n = 19 nanorod. The
procedure for building the Ag nanorods is taken from Refs. [56,57].

In Fig. 2, we report the computed optical spectrum of a
Mg50 cluster. The inclusion of nonlocality and nonadiabaticity
in the Pauli potential has very similar effects in the spectrum
to that of the Mg8 cluster, with the nonlocal term shifting
the peaks to the correct position and the nonadiabatic term
adjusting the shape of the spectral envelope. It is also worth
noting that the TD-OFDFT results get more accurate as the
systems grow larger in size because the larger the system the
more likely it is to develop free-electron-gas-like electronic
structure in its core [34].

We now shift to Na clusters. In all past investigations,
even the simplest of approximations for the Pauli potential
(i.e., TFW) resulted in oscillator strengths that agree well with
the TD-DFT result [27]. In light of the simulations presented
here, it is clear that such agreement is largely due to error
cancellation between the missing adiabatic nonlocal term and
nonadiabatic correction in TFW. In this paper, we take a look
at an icosahedron Na cluster containing 55 Na atoms, see
Fig. 3.

We therefore expect that the spectrum calculated with TFW
matches well with the TD-DFT benchmark with only a slight
redshift, confirming previous results [27]. When accounting
for the nonlocal correction to the adiabatic Pauli potential
computed at the LMGP level, peaks shift to the correct
position but the strength of the main peak at ∼3 eV is overes-
timated. Only after including both nonlocal and nonadiabatic
corrections does TD-OFDFT yield a spectral envelope that is
very close the one from TD-DFT. Thus, it is clear that error
cancellation is a big player in the previously reported good
results from the TFW approximation for the Pauli potential.

TABLE I. Comparison of the excitation energy of the longitu-
dinal plasmon peaks of Ag rods of increasing length. TD-DFT and
TD-DFTB are taken from Ref. [56]. The shorthand notations pos and
shift stand for peak position (excitation energy) and shift from the
Ag19 system, respectively. Energy units are eV.

TD-DFT TD-DFTB TFW LMGP+JP

System pos shift pos shift pos shift pos shift

Ag19 3.56 2.67 2.50 2.66
Ag25 3.27 −0.29 2.58 −0.09 2.39 −0.11 2.51 −0.15
Ag31 3.01 −0.55 2.41 −0.26 2.26 −0.24 2.36 −0.30
Ag37 2.77 −0.79 2.26 −0.41 2.15 −0.35 2.22 −0.44
Ag43 2.57 −0.99 2.08 −0.59 2.05 −0.45 2.11 −0.55
Ag49 2.41 −1.15 2.02 −0.65 1.95 −0.55 2.01 −0.65
Ag55 2.30 −1.26 1.91 −0.76 1.85 −0.65 1.91 −0.75
Ag61 2.04 −1.52 1.74 −0.93 1.71 −0.79 1.76 −0.90

Silver is an important transition metal with high applicabil-
ity to chemistry and engineering. Thus, its electronic response
has often been the subject of approximate models [55,56]. We
compute the longitudinal plasmon excitation of Ag nanorods
and compare against TD-DFT and the semiempirical TD-
DFTB presented in Ref. [56]. Snapshots of the Ag nanorods
used can be found in Fig. 4.

Even though the TD-DFT and TD-DFTB calculations were
carried out with the Perdew-Burke-Ernzerhof XC functional
and the DZ basis set [56], which differ from the setup of
our TD-OFDFT calculations (we employ LDA XC and plane
waves), the trends in the computed excitation energies should
not be strongly dependent on the choice of local or semilocal
XC functionals [58]. Table I shows that TD-OFDFT with
TFW is very close to the TD-DFTB result and LMGP + JP
is essentially on top of TD-DFTB. In inspecting the table, we
see that TD-OFDFT correctly captures the trend that the peaks
shift to the red as the Ag rod’s length increases. However, one
wonders why the TFW approximation (which is both adia-
batic and local) does so well in comparison to the nonadiabatic
and nonlocal calculation. Clearly, the answer must be error
cancellation. We have witnessed error cancellation before for
Na custers (see Fig. 3) where TFW delivered results almost
as good as LMGP + JP. It is possible that, similarly to the
Na clusters, the longitudinal plasmon mode for the Ag rods

FIG. 5. Optical spectrum of the Si55 cluster. See caption to Fig. 1 for additional details.
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FIG. 6. Optical spectrum of the Si30H40 cluster (see picture in
the inset for the structure of the cluster). Solid black: TD-DFT
benchmark. Dash-dotted red: TFW (local). Solid blue: LMGP + JP
(nonlocal and nonadiabatic).

behaves similarly to a free electron gas—dynamics which
is already captured by the TFW functional in the adiabatic
approximation.

B. Semiconductor systems

We start the investigation of the optical spectra of clusters
of semiconducting systems with a Si55 icosahedral cluster
carved in a way analogous to the metallic clusters mentioned
in the previous section, see Fig. 5. TFW and LMGP only
qualitatively capture the spectra, with several peaks with over-
estimated oscillator strength. For LMGP, the peaks at ∼10 eV
and ∼15 eV are too strong. The nonadiabatic correction to
the Pauli potential recovers the correct spectral envelope by
lowering the oscillator strengths of these two peaks in favor of
an increased intensity in the high-energy tail of the spectrum.

Broadening of the energy levels results from the fact that
the fermionic system has a higher density of states compared

to the bosonic system. The increase of the number of excited
states leading to broadening is an important feature of the
nonadiabatic correction to the Pauli potential.

We move on to consider an additional silicon system, Si30

cluster cut from a crystal diamond Si bulk structure. We also
consider the H-passivated version of the cluster employing the
passivation protocol described elsewhere [59] (i.e., for each
dangling Si bond, we put a hydrogen atom on the other end of
the bond). We carefully chose the size of the structure so each
Si atom can have at most two Si-H bonds. In contrast to the
icosahedron clusters which are more metallic, this configura-
tion of the Si cluster is more semiconductorlike. The optical
spectrum for this system is available in Fig. 6. TFW does
not yield the correct peak position in the spectrum. Instead,
LMGP + JP obtains the correct position of the lowest-lying
peak while it blends away the other features of the spectrum.

To interrogate TD-OFDFT’s ability to predict trends when
chemical changes are applied to the system, in Fig. 7 we
compare the effect of passivation on the optical spectrum.
TD-DFT predicts that the passivation induces a slight redshift
of the spectrum. Interestingly, a similar redshift can also be
observed in the LMGP + JP TD-OFDFT result.

OFDFT can perform well for III-V semiconductors
[39–41,60]. Figure 8 compares the optical spectrum computed
with TD-OFDFT and TD-DFT for a Ga4As4 cluster. Once
again, by accounting for nonlocality and nonadiabaticity in
the Pauli potential, the TD-OFDFT spectra are very similar to
the TD-DFT benchmark result.

C. Going beyond the capabilities of TD-DFT

The optical spectrum of large nanoparticles is an impor-
tant experimental characterization for optoelectronic materials
[61]. In this section, we consider a Ga152As152 nanoparti-
cle cut from the bulk GaAs structure and passivated in a
similar way as described previously for Si. Following a well-
established recipe [59], for GaAs quantum dots instead of
passivating with H atoms, for each Ga atom a pseudo H atom

FIG. 7. Effects of passivation with H atoms on the optical spectrum of Si30. Left panel: TD-DFT. Right panel: TD-OFDFT carried out with
with adiabatic LMGP plus nonadiabatic correction (LMGP + JP).
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FIG. 8. Optical spectrum of the Ga4As4 cluster. See caption to Fig. 1 for additional details.

with 1.25 electrons and for each As atom a pseudo H atom
with 0.75 electrons are used.

Tackling this system with TD-DFT would be a major un-
dertaking probably requiring specialized software and high
performance computing hardware. Our TD-OFDFT method
only required a single compute node (36 cores). Conceivably,
with available high-performance computing, TD-OFDFT
would be able to approach much larger system sizes com-
pared to TD-DFT as we have showcased for ground states
in a previous work [62] where complex materials could be
approached with nonlocal kinetic energy functionals. To pro-
vide further context, we mention here that in another prior
work [34] we showed that DFTPY with nonlocal functionals
achieves linear computational scaling up to system sizes of
1 000 000 atoms.

Figure 9 illustrates the optical spectrum for the passivated
and unpassivated nanoparticles computed with the nonlocal
and nonadiabatic method LMGP + JP in comparison with

experimental spectra recorded for bulk and nanoparticle GaAs
systems.

Interestingly, TD-OFDFT recovers the main spectral fea-
ture at ∼ 5 eV as well as the smaller feature at ∼ 6 eV for
both the bulk and nanoparticle systems.

It is important to note that TD-OFDFT misses the band-gap
transition at ∼ 2.5 eV, which is prominent in the spectrum of
bulk GaAs. Because OFDFT does not have a notion of single-
particle orbitals or bands, it is not surprising that several
details in the optical spectra related to interband transitions are
missing in TD-OFDFT. Formally, these would be recovered
by the nonadiabatic Pauli potential. However, in this paper, we
have developed a nonadiabatic potential derived from the free
electron gas. Thus, it would simply be too much to ask from
the free electron gas to also be able to reproduce interband
transitions in GaAs. Overall, despite the mentioned flaws,
the agreement between the TD-OFDFT and the experiment
is better than semiquantitative.

FIG. 9. Left: TD-OFDFT optical spectrum of a passivated Ga152As152 nanoparticle carried out with adiabatic LMGP plus nonadiabatic
correction (LMGP + JP). Experimental spectrum for GaAs nanoparticles (experiment-NP) is taken from Ref. [63] and is noticeably of lower
overall resolution compared to the spectrum of bulk GaAs which is taken from Ref. [64]. Right: Effects of passivation on the optical spectrum
of the nanoparticle predicted with TD-OFDFT.
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FIG. 10. Optical spectrum of the Mg8 cluster (same as in Fig. 1)
computed with TD-DFT and two versions of the nonadiabatic Pauli
potential (see text for details).

D. Comparison against a truncated nonadiabatic Pauli potential

As mentioned, in Ref. [20] the authors pioneered the use
a nonadiabatic Pauli potential in real-time TD-OFDFT sim-
ulations. Their so-called current-dependent potential reads as
follows [see Eq.(15) of the reference]:

vCD
P (r, t ) = π3

2k2
F (r)

F−1

{
iq · j(q, t )

1

q

}
, (16)

which can be identified as the first term of Eq. (15). Here we
wish to determine the effect of neglecting the second term
on the optical spectra. The physical picture is that Eq. (16)
handles the low-q dependence of the potential in the same
way the Thomas-Fermi functional handles the low-q density
dependence of the kinetic energy functional. The second term
of Eq. (15), instead, behaves in a way reminiscent of the von
Weizsäcker term (i.e., it goes like q2). Therefore, in systems
where large q values are sampled (such as in clusters and
any nonperiodic system), we expect the second term to play
a significant role.

In Fig. 10, we report the optical spectra of Mg8 computed
with TD-DFT and nonadiabatic TD-OFDFT with the two op-
tions for the nonadiabatic potential [LMGP + JP corresponds
to Eq. (15), LMGP + CD corresponds to Eq. (16)]. From
the figure, it is clear that the von Weizsäcker-like term is
instrumental in achieving semiquantitative agreement with the
TD-DFT reference calculation. Once again, we believe the
reason stems from the recovered q2 behavior of the additional
term present in Eq. (15).

V. CONCLUSION

We proposed and implemented a nonadiabatic (current-
dependent) Pauli potential for time-dependent orbital-free
DFT, TD-OFDFT, simulations of electron dynamics in materi-
als. The nonadiabatic part of the Pauli potential is responsible
for major qualitative features in the optical spectrum because
it bridges the dynamics of N noninteracting bosons with the
one of N noninteracting electrons. The proposed potential
derives from the frequency-dependent dielectric function of
the free electron gas.

We test our method on clusters of metallic elements (Na,
Mg, Ag) and semiconductors (Si, GaAs). In most cases, we
find TD-OFDFT to be close to benchmark TD-DFT spectra.
TD-DFT is chosen as a benchmark because it relies on an
exact description of the N-electron fermionic system (i.e., ex-
act time-dependent Pauli potential). The study of Na clusters
revealed that previous investigations bare of the nonadiabatic
Pauli potential enjoyed strong error cancellation between the
absence of nonadiabaticity in the potential and errors intro-
duced in the adiabatic part of the potential (which we address
employing the LMGP nonlocal kinetic energy functional).

In line with expectations, when studying semiconductors,
TD-OFDFT struggles in the quantitative description of spec-
tral features attributed to interband excitations. However, even
for such difficult cases as GaAs nanoparticles, the method
captures close to quantitatively the optical spectra and overall
spectral envelopes.

An interesting future investigation would be to test the
applicability of semilocal (GGA [60,65–68] and meta-GGA
[69–72]) Pauli adiabatic potentials in place of the nonlocal
ones tested in this work. This could result in important com-
putational savings.

In sum, we developed an efficient method for the study of
nonequilibrium electron dynamics of realistically sized ma-
terials setting the stage for using time-dependent orbital-free
methods for simulating complex systems out of equilibrium
for chemistry, energy applications, and beyond.
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APPENDIX: IMPLEMENTATION OF THE NONADIABATIC
POTENTIAL

We numerically solve Eq. (2) in the usual way by a propa-
gation method implemented in our software package DFTPY.
We choose the Crank-Nicolson propagator for this task, with
a predictor-corrector up to any desired order. We refer the
readers to Ref. [34] for the details of the implementation. In
short, the propagator is to solve the following equation:

(
1 + i

dt

2
Ĥ

)
φB(t + dt ) =

(
1 − i

dt

2
Ĥ

)
φB(t ). (A1)

Typically, the predictor-corrector only checks the den-
sity to be converged [74,75]. However, to implement a
current-dependent potential such as the one in Eq. (15), the
predictor-corrector needs to be modified to include the cur-
rent density, i.e., | jcorr − jpred| < ε. Unfortunately, this often
results in a large number of predictor-corrector loops, increas-
ing computation time and causing numerical instabilities. To
resolve this issue, we implemented the nonadiabatic potential
as a correction with a separate Taylor-like propagation.
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To achieve this goal, we first write the Hamiltonian as

Ĥ (t ) = Ĥ0(t ) + Ĥ ′(t ), (A2)

where Ĥ ′ includes the nonadiabatic potential in Eq. (15)
and Ĥ0 includes everything else. The solution of the time-
dependent Schrödinger-like Eq. (2) can be expressed in terms
of a time evolution operator [75]

φB(t + dt ) ≈ exp

[
−iĤ

(
t + dt

2

)
dt

]
φB(t ), (A3)

where the approximation implies a small dt .
In the first step, we use the Crank-Nicolson propagator with

a predictor-corrector for only Ĥ0(t ). We essentially obtain

φ0
B (t + dt ) ≈ exp

[
−iĤ0

(
t + dt

2

)
dt

]
φB(t ). (A4)

Plug Eq. (A4) into Eq. (A3), we obtain

φB(t + dt ) ≈ exp

[
−iĤ ′

(
t + dt

2

)
dt

]
φ0

B (t + dt ). (A5)

Note here we used the approximation exp[−iĤ (t + dt
2 )dt] ≈

exp[−iĤ0(t + dt
2 )dt] exp[−iĤ ′(t + dt

2 )dt]. Even though Ĥ ′

does not commute with Ĥ0, the cross terms are in the second
and higher orders of dt . In the case of small dt , the cross terms
are negligible.

In the case of small Ĥ ′(t ) and small dt , we can make
the assumption that Ĥ ′(t + dt

2 ) ≈ Ĥ ′(t ) and Taylor expand
Eq. (A5) up to the first order

φB(t + dt ) = [1 − iĤ ′(t )dt]φ0
B (t + dt ). (A6)

Therefore, as the second step, we use the first-order Tay-
lor propagator to propagate the nonadiabatic correction. We
tested this method for a Mg8 cluster and achieved a nearly
identical result compared to propagating the whole Hamilto-
nian with the Crank-Nicolson propagator.

We note that when using Eq. (15) for clusters, the k−4
F (r)

dependence of the second term can cause numerical instabil-
ities in low-density regions. In such a case, a mask function
such as 1 − 1/{1 + [n(r)/ncutoff]2} can be applied to the second
term to fix the numerical instabilities.
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