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Efficient time-dependent orbital-free density functional theory: Semilocal adiabatic response
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Orbital-free density functional theory and its time-dependent extension are efficient ab initio methods for
calculating the electronic structure and dynamics of large systems. Through the calculation of the optical spectra
of selected clusters, we reach three important conclusions: (1) The quality of the spectra is strongly affected by
the quality of the corresponding ground-state electron density; (2) the adiabatic part of the electronic response to
external perturbations can be safely evaluated at the semilocal level; and (3) the nonadiabatic, current-dependent
part of the time-dependent Pauli potential is key to recover correct spectral envelopes.
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I. INTRODUCTION

In the quest for the development of accurate electronic
structure methods capable of approaching those realistic
microstates occurring in experiments, orbital-free density
functional theory (OFDFT) is emerging as a tool for materials
science and engineering [1,2]. The main distinction be-
tween OFDFT and the commonly adopted Kohn-Sham DFT
(KSDFT) is the fact that in OFDFT, the orbital-dependent
noninteracting kinetic energy is evaluated with an approxi-
mate, pure density functional. Even though the noninteracting
kinetic energy is strictly a functional of the electron density
(the Kohn-Sham orbitals are density functionals) its func-
tional dependence on the electron density is yet unknown.
Therefore, in OFDFT one needs two approximate function-
als, one for the noninteracting kinetic energy (the so-called
kinetic energy density functional, or KEDF) and one for the
exchange-correlation (xc) functional. The accuracy of OFDFT
is largely dominated by the accuracy of the KEDF employed.

KEDF approximants have historical roots in the Thomas-
Fermi theory [3,4]. The simplest KEDF is a pure, local
functional of the electron density function, namely,

T TF
S [n] = CTF

∫
dr n5/3(r), (1)

where CTF is a constant. KEDFs have evolved to semilocal,
generalized gradient approximation (GGA) functionals [5–9],

T GGA
S [n] = CTF

∫
dr n5/3(r)Ft [s(r)], (2)

where the reduced gradient s(r) = |∇n(r)|
2(3π2 )1/3n4/3(r) is the argu-

ment of the enhancement factor Ft . Similarly to functionals for
the xc, the enhancement factor for KEDFs is typically given
by Ft (s) = 1 + F P

t (s) [6] where for s → 0 the enhancement
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factor Ft → 1 recovering the Thomas-Fermi functional for
uniform densities and for s < +∞ the Pauli enhancement
factor F P

t (s) is nonzero. Nonlocal KEDFs are yet another
category of functionals which depend on the value of the
density in a finite neighborhood of a point r. Several nonlocal
KEDFs have the general form

T NL
S [n] =

∫
dr dr′ nα (r)ω[n](r − r′)nβ (r′). (3)

Typically the kernel function ω[n](r − r′) is approximated by
a function of the electron density at point r, and the magnitude
of the distance between r and r′ leading to simplified integrals
involving convolutions which can be resolved in Fourier space
with the aid of splines [10–12].

Employing many of the available KEDFs, OFDFT re-
produces accurately the ground-state electronic structure of
metallic systems [13] in part because the electronic structure
of these systems resembles closely the one of the uniform
electron gas which is the reference system for developing
most KEDFs. Particularly for nonlocal KEDFs, the linear
response of the free-electron gas is a constituting ingredient of
the kernel [14]. For semiconductors, certain GGA [7,15] and
nonlocal functionals [10,11] are able to describe semiquanti-
tatively the ground state of only selected compounds (e.g., Si,
and III-V compounds) whether in bulk, finite, or semi-infinite
configurations.

Resting on early work [16–20], recent advances have
showed that time-dependent OFDFT (TD-OFDFT) can be an
accurate method for predicting the excited state dynamics
and optical spectra of clusters [21–26]. The effective time-
dependent potential in TD-OFDFT differs from the one of
TD-DFT by the Pauli potential vP(r, t ), defined as the differ-
ence between the full KEDF potential and the von Weizsäcker
(bosonic) potential,

vP(r, t ) = vTS (r, t ) − vvW(r, t ). (4)

Because of the simplified (Madelung) wave function used in
TD-OFDFT, there are strong nonadiabatic effects (i.e., fre-
quency or history dependent) for the Pauli potential. In an
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effort to account for such a nonadiabaticity, we and others
have focused efforts on developing nonadiabatic Pauli poten-
tials for TD-OFDFT simulations [25–28].

In this paper, we conveniently characterize the time depen-
dence of the Pauli potential with two contributions: Adiabatic,
recovered by evaluating functionals developed for the ground
state with the time-dependent electron density as an argument;
and nonadiabatic, defined as the discrepancy between the time
dependence of the exact adiabatic Pauli potential and the exact
potential.

Here, we analyze TD-OFDFT’s optical spectra comparing
them against conventional TD-DFT calculations. We do so
invoking two aspects: the ability of OFDFT to reproduce
the ground-state electron density n0(r) as well as the elec-
tron density response δn(r, t ) = n(r, t ) − n0(r). Following
our analysis of the Pauli potential, we can also subdivide
the density response into adiabatic and nonadiabatic. Thus,
inspired by recent work from the Varga group [24], our analy-
sis will center upon the detrimental effects on the predicted
optical spectra of an approximate ground-state density re-
covered from the approximate KEDFs in comparison to the
exact KSDFT density (for a given choice of xc functional),
and the effect of several types of adiabatic Pauli potentials
and whether or not a nonadiabatic correction derived from
the uniform electron gas improves upon the adiabatic spectra.
Our previous work shows that the nonadiabatic Pauli potential
does improve the overall spectral envelope. However, in this
paper we will be able to disentangle the various sources of
error and quantify the effects of the approximations consid-
ered. The analysis will uncover an important opportunity, i.e.,
the possibility to use the adiabatic response from semilocal
functionals in place of the more computationally expensive
response from nonlocal functionals without losing accuracy
in the predictions.

We remark that we take TD-DFT as a benchmark be-
cause it employs the exact noninteracting kinetic energy of
N fermionic electrons, formally recovering the exact Pauli
potential’s adiabatic and nonadiabatic contributions. For con-
sistency, we will use the same xc functional for OFDFT and
KSDFT simulations throughout.

II. FORMALISM

In this section, we provide a brief introduction to the
formalism behind TD-OFDFT. For more details, we refer
the readers to Refs. [25,28,29]. In TD-OFDFT, one-to-one
invertible maps are established between the real system of
interacting electrons, the fictitious system of noninteracting
electrons (also known as the KS system), and a fictitious
system of noninteracting bosons. The bosonic system yields
the following density–wave function relationship

n(r, t ) = N |φB(r, t )|2, (5)

where φB(r, t ) is a normalized bosonic wave function which
can be expressed exactly as a Madelung-type wave function

without loss of generality, φB(r, t ) =
√

n(r,t )
N eiS(r,t ). N is the

number of electrons in the system. Throughout, the subscript
B stands for bosonic system.

A time-dependent Schrödinger-like equation is employed
to propagate the system for t > t0 (atomic units are used
throughout this work),[

−∇2

2
+ vB(r, t )

]
φB(r, t ) = i

∂

∂t
φB(r, t ). (6)

The time-dependent effective potential is given by

vB(r, t ) = vP(r, t ) + vS(r, t ), (7)

where vP(r, t ) is the time-dependent Pauli potential defined in
Eq. (4), and vS(r, t ) is the time-dependent KS potential. The
total Pauli potential can be represented as the adiabatic portion
plus a nonadiabatic correction

vP(r, t ) = vad
P (r, t ) + vnad

P (r, t ), (8)

where the adiabatic portion can be represented as the func-
tional derivative of the Pauli energy with respect to the density
at time t ,

vad
P (r, t ) = δTP[n0]

δn0(r)

∣∣∣∣
n0(r)→n(r,t )

. (9)

The Pauli energy is the difference between the noninteract-
ing kinetic energy and the von Weizsäcker energy, TP[n] =
TS[n] − TvW[n]. Therefore, any kinetic energy functional can
be used to approximate the adiabatic portion of the Pauli
potential.

We disentangle the three parts of a time-dependent DFT
simulation: (1) ground-state density n0(r), (2) adiabatic re-
sponse, and (3) nonadiabatic response. We explore the effect
of using several functionals of different complexity for the
three parts: exact and approximate KEDFs (GGA or nonlocal)
for predicting n0, GGA KEDF for approximating the adiabatic
response, and the Jiang-Pavanello (JP) functional for approx-
imating the nonadiabatic response.

Analysis of part (1) leads us to evaluate how the er-
ror in the ground-state density for approximate functionals
affects the quality of TD-OFDFT spectra. Such a density-
driven error should be reduced when a more accurate
ground-state density is employed. We choose the initial

condition of Eq. (6) to be φB(r, 0) = 1√
N

√
nKS

0 (r)eik·r or

φB(r, 0) = 1√
N

√
nLMGP

0 (r)eik·r, where nKS
0 (r) and nLMGP

0 (r)
are the ground-state densities of the system of interest in KS-
DFT and in OFDFT with the Local-kF Mi-Genova-Pavanello
(LMGP) nonlocal functional [10], respectively, and eik·r de-
notes the momentum of strength k = |k| along the direction
of the wave vector k to the electronic system as the initial,
weak perturbation. In this work, LMGP refers to LMGP0.
For details regarding the different types of functionals in the
LMGP family, we refer the readers to Ref. [10].

To analyze part (2), in a subsequent step, we solve
the time-dependent Schrödinger-like equation in Eq. (6)
with the adiabatic portion of the Pauli potential approximated
with the following equation,

vad
P (r, t ) = vGGA

P (r, t ) − vGGA
P (r, 0) + vX

P (r, 0), (10)

where X is the Pauli potential from the KEDF used for the
corresponding ground-state calculation (i.e., it can be either
the exact KSDFT Pauli potential, or an approximate nonlocal
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FIG. 1. The structures of the three systems used in calculations.
Small white circles denote passivating hydrogen atoms [30,31] (see
Supplemental Material for the structure files [30]).

or GGA Pauli potential). vGGA
P (r, t ) is the adiabatic Pauli

potential evaluated using Eq. (9) at time t with TP calculated
from a GGA level functional approximation, and vGGA

P (r, 0)
is the Pauli potential evaluated with the same GGA functional
using the ground-state density of X as its argument. In the KS
case, a simple inversion is used to calculate the Pauli potential,

vKS
P [n](r) = ∇2√n(r)

2
√

n(r)
− vS[n](r), (11)

which we find to be numerically stable for the systems con-
sidered.

Finally, part (3) of the analysis is carried out using the
JP nonadiabatic correction of the Pauli potential developed
recently by us [26], namely,

vnad
P (r, t ) = −π3

12

(
6

k2
F (r)

F−1

{
iq · j(q, t )

1

q

}

+ 1

k4
F (r)

F−1{iq · j(q, t )q}
)

, (12)

where j and q are the electronic current density and the
reciprocal space vector, respectively. The current density is
determined by the standard equation j(r) = 1

2i [φ
∗(r)∇φ(r) −

φ(r)∇φ∗(r)]. F stands for the Fourier transform and kF (r) is
the Fermi wave-vector function of the local electron density.

III. COMPUTATIONAL DETAILS

We choose the following systems for our calculations:
three metal clusters Mg8, Mg50, and Na55, and three semicon-
ductor clusters Si30, Si30H40, and Ga4As4. The structures of
the systems are illustrated in Fig. 1.

The TD-OFDFT calculations are performed with DFTpy
[32] and the benchmark TD-DFT calculations are performed
with embedded Quantum ESPRESSO’s TD-DFT implemen-
tation [33–35]. All TD-OFDFT and TD-DFT calculations
employ the same adiabatic Perdew-Zunger local density ap-
proximation (LDA) [36] as the xc functional and optimized
effective pseudopotentials (OEPP) [37]. The kinetic energy
cutoff for the TD-DFT wave functions and the TD-OFDFT

TABLE I. KSDFT-OFDFT density difference 	n0 and energy
difference 	E0 for the ground electronic state of the systems in
Fig. 1, and energy difference in meV/electron. N stands for the total
number of valence electrons in the systems.

System N LKT LMGP

	n0 	E0 	n0 	E0

Mg8 16 0.87 678 0.44 238
Mg50 100 3.4 403 1.5 119
Na55 55 4.0 73 2.9 235
Si30 120 8.1 946 3.6 390
Si30H40 160 16.5 1158 4.8 180
Ga4As4 32 2.3 1324 1.0 412

density are chosen to converge the ground-state energy within
1 meV/atom, which is 104 eV for the Mg clusters, 150 eV for
Na55, 940 eV for the Si clusters, and 600 eV for Ga4As4. The
oscillator strength is calculated using σ (ω) = −ω Im[ δμ̃(ω)

k ],
where δμ̃(ω) is the Fourier transform of the dipole moment
change calculated at every time step of the propagation and
k is the momentum, “kick” strength for the initial wave
function, φB(r, t = 0) as described in the previous section.
k = 1.0 × 10−3 a.u. is used for all calculations. The time step
chosen is consistent with the plane-wave cutoff employed
and is dt = 0.1 a.u. for the Mg, Na, and GaAs systems and
dt = 0.01 a.u. for the Si systems.

As mentioned, we employ the following KEDFs: (1) GGA
functional of Luo-Karasiev-Trickey (LKT) [7], which has the
following Pauli enhancement factor [F P

t (s) = Ft (s) − 5
3 s2],

F P
t (s) = 1

cosh(a s)
, (13)

where a = 1.3; and (2) nonlocal functional LMGP [10].

A. Analysis of KEDF performance for the ground state

In Table I we report the ground-state electron density
difference 	n0 and the energy difference 	E0 between the
KSDFT benchmark ground-state density and the approximate
densities computed by OFDFT for the systems in Fig. 1. 	n0

is defined with the following equation which has been used
often in the OFDFT literature [10],

	n0 = 1

2

∫
|nKSDFT(r) − nOFDFT(r)|dr. (14)

In all systems considered, the nonlocal functional LMGP
yields more accurate densities than the GGA functionl LKT.
We choose LKT in this work because it was shown to be
among the best GGA functionals available to date [7]. While
the LKT density is very good for metallic systems, the error
becomes large for the semiconductor cluster Si30H40. This
hints to the fact that LKT will suffer a large density-driven
error for the ground state. This error may even carry over
to the time-dependent simulations and result in errors in the
predicted response properties, such as optical spectra. On the
other hand, LMGP’s performance is better for metallic sys-
tems than semiconductors, but the errors involved are smaller.
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TABLE II. Comparison of static dipole polarizability, αxx (ω = 0) (a.u.).

KEDF for n0 LKT LKT LMGP LMGP Exact Exact Exact
vP for δn(t ) LKT LKT+JP LKT LKT+JP LKT LKT+JP Exact

Mg8 555 547 434 446 414 409 486
Mg50 2256 2149 1501 1519 1826 1817 1500
Na55 4391 4343 3433 3364 3175 3135 3537
Si30 1747 1727 1296 1280 1373 1361 1501
Si30H40 2735 2706 1951 1928 1980 1962 1971
Ga4As4 289 285 211 204 194 192 210

We also note that the LMGP energy is also generally better
than the LKT energy except for the Na55 system.

B. Analysis of KEDF performance for electronic
structures out of equilibrium

To inspect the performance of TD-OFDFT for reproducing
quantities related to the response of the system to external
perturbations, in Table II we report the static dipole polariz-
abilities αxx for the systems considered. The table is organized
so that the ground-state density-driven error reduces in going
from left to right.

We remind the reader that we are computing the electronic
response exclusively with the adiabatic LKT functional utiliz-
ing Eq. (10) (LKT) with and without the corrective potential
in Eq. (12) due to the nonadiabaticity of the Pauli potential
(LKT+JP).

From the table we notice that the trends are very similar to
the ones in Table I in that the quality of the computed quantity
(in this case the dipole polarizability) increases as the ground-
state density used is closer to the one from KSDFT (which
employs the exact Pauli potential). This gives us hope that a
GGA functional, such as LKT, can perform well in predicting
the ω �= 0 response of an electronic system to external pertur-

FIG. 2. Comparison of the errors in the dipole polarizability and
the ground-state density. α is taken from Table II and δn0 from Ta-
ble I. All values except the black markers employ the LKT response.
Black: TD-DFT response on top of the KSDFT density; green: LKT
response on top of the KSDFT density; blue: LKT response on top
of the LMGP density; red: LKT response on top of the LKT density.
The black curve has been inserted to ease the interpretation of the
scatter plot.

bations. Table II also shows that the nonadiabatic contribution
to the Pauli potential only shifts the dipole polarizability by
up to 70 a.u., or less than 2%.

To better analyze these results, we plot the values of Ta-
bles II and I in a scatter plot in Fig. 2. The figure clearly
shows that dipole polarizabilities computed from the LKT
ground-state density are worse than the ones computed with
LMGP or KS ground-state densities.

Analyzing further Fig. 2 and Tables II and I we notice
that in many cases polarizabilities computed from the LMGP
ground-state density are closer to the benchmark KSDFT re-
sult than the ones computed from the exact (KS) density. This
must be due to error cancellation. Let us explain the error
cancellation with a simple truth table.

Considering the logic that emerges from Table III, when
employing an approximate (OFDFT) ground-state density and
then determining the response also approximately (OFDFT)
results in a method that is more approximate than the method
originating from starting from the KSDFT ground-state den-
sity and the approximate (OFDFT) response. Therefore, we
can clearly and safely assign the apparently more accu-
rate behavior of the dipole polarizabilities involving LMGP
ground-state densities in comparison to those involving KS-
DFT ground-state densities to error cancellation. We also note
that even though the ground-state energy values provided in
Table I are interesting and useful to provide context to the ap-
proximations involved, they do not provide useful information
to infer on the quality of excited state properties. Therefore,
alongside the just presented dipole polarizabilities, we now
move on to consider optical spectra in the next set of results.

To determine whether the same trend is recovered for
time-dependent external perturbations, we also computed the
optical spectra of the same clusters. In Figs. 3 and 4, we start

TABLE III. Truth table regarding the approximate or exact
(within numerical precision) noninteracting kinetic energy given
their dependence on a ground-state density n0 and a density response
δn(t ). As before, KSDFT is labeled as exact because it employs the
exact noninteracting kinetic energy. OFDFT stands for approximate
noninteracting kinetic energy employed in OFDFT simulations (in
this work they are realized by the LKT and the LMGP kinetic energy
functionals).

n0 KSDFT KSDFT OFDFT
δn(t ) KSDFT OFDFT OFDFT

Noninteracting kinetic energy Exact Approx. Approx.
No. of approximations 0 1 2
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FIG. 3. Optical spectrum of the Mg50 cluster (see Fig. 1 for a snapshot of the structure). LKT is a GGA kinetic energy functional employed
in the adiabatic approximation (i.e., vP(t ) 	 vP[n0 = n(t )]). “+JP” stands for adiabatic LKT augmented by the additional propagation step
with the nonadiabatic potential in Eq. (12). “−LMGP” and “−KS” stand for the LMGP or the KS ground-state density used as the initial
condition instead of the LKT ground-state density, respectively.

by considering the optical spectrum of clusters of magnesium
(Mg50 and Mg8) analyzing the effect of using three different
ground-state densities, LKT, LMGP, and KSDFT, only an adi-
abatic response (i.e., ṽnad

P = 0), and including nonadiabaticity

in the Pauli potential at the level of the JP potential given in
Eq. (12).

The adiabatic LKT response on the LKT ground-state den-
sity yields at best a qualitatively correct optical spectrum.

FIG. 4. Optical spectrum of the Mg8 cluster. See caption to Fig. 3 for additional details.
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FIG. 5. Optical spectrum of the Na55 cluster. See caption to Fig. 3 for additional details.

Employing the more accurate LMGP or the KS ground-state
density, the overall spectrum (peak positions, especially) is
much closer to the TD-DFT benchmark, but the spectral en-
velope is not recovered fully. The addition of the nonadiabatic
correction from the JP functional corrects the spectral enve-
lope further. Thus, LMGP or KS ground-state density, LKT

adiabatic response, and a JP nonadiabatic correction delivers
a TD-OFDFT result very close to the TD-DFT spectrum.

The magnesium clusters are a good example to show the
interplay between the three error contributions (ground-state
density, adiabatic, and nonadiabatic response). The majority
of the error comes from a density-driven error, as indicated

FIG. 6. Optical spectrum of the Si30H40 cluster. See caption to Fig. 3 for additional details.
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FIG. 7. Optical spectrum of the Si30 cluster. See caption to Fig. 3 for additional details.

by the massive improvement of the spectrum in going from
using the LKT ground-state density to the LMGP and KS. The
nonadiabatic functional-driven error mainly contributes to the
shape of the spectral envelope.

Figures 5 and 6 report an analysis similar to the one done
for the Mg55 cluster. It has been reported that TD-OFDFT
yields accurate optical spectra for Na clusters even with the
simple adiabatic Thomas–Fermi–von Weizsäcker approxima-
tion [21]. Here, we recover a similar behavior: The adiabatic
LKT spectrum closely reproduces the TD-DFT result. How-
ever, this is due to massive error cancellations between the
density-driven and functional-driven errors. The bottom right
panel of Fig. 5 indicates that the nonadiabatic functional-
driven error of LKT blueshifts the peak. The peak redshifts
from the right panels to the left panels as the density-driven
error is introduced. The strength of the peak also goes down.
When we introduce nonadiabaticity in the Pauli potential, the
spectral envelope is recovered fully (e.g., the largely overesti-
mated peak strength for the peak at 3 eV is corrected).

A similar tale is recovered from analyzing the spectra of the
silicon clusters (Si30H40 and Si30) in Figs. 6 and 7. Unfortu-
nately, in comparison to the two metal clusters, the errors are
much larger. We note, especially, that the functional-driven
error is very large because even including the nonadiabatic
corrections to the Pauli potential delivers a spectrum that is not
as close to the benchmark as the one of the metallic clusters
considered previously.

In Fig. 8 we show that the response evaluated with
LKT+JP and with LMGP+JP delivers similar spectra for the
Si30H40 cluster. This shows that the problems for recovering
the complete spectral envelope are rooted in the nonadiabatic
part of the response. We expect such a behavior for semicon-
ductors because the approximate KEDFs developed so far are
parametrized/developed for metals. Additionally, the JP func-

tional is derived from the Lindhard function of the bosonic
free-electron gas which also resembles more metallic systems
than semiconductors. We witnessed a similar behavior for a
large GaAs cluster in a recent related work [26] where we
attributed the discrepancies between the TD-OFDFT and TD-
DFT results to the absence in the JP potential of an account of
interband transitions. However, despite the semiquantitative
nature of the agreement with the benchmark TD-DFT result,
Fig. 6 shows that by reducing the density-driven error, TD-
OFDFT recovers the correct energy position of the main peak
(plasmonic) in the spectrum.

In Fig. 9 we conduct the same analysis for a Ga4As4 cluster
obtaining results in line with those for the Mg50 cluster. This
further suggests that evaluating the LKT+JP response with

FIG. 8. Optical spectrum of the Si30H40 cluster comparing
LMGP and LKT adiabatic response using in both cases the LMGP
ground-state electron density and the JP nonadiabatic correction.
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FIG. 9. Optical spectrum of the Ga4As4 cluster. See caption to Fig. 3 for additional details.

the KS ground-state density improves the predictivity of the
TD-OFDFT simulations making them closer to the bench-
mark TDDFT optical spectra.

We carried out the same calculations with adiabatic
response evaluated from the TFW functional (i.e., Thomas-
Fermi functional used for the Pauli energy and potential) and
found very similar results compared to the LKT response (see
Supplemental Material for the TFW results [30]).

C. Computational cost

To understand why it is important to develop efficient
TD-OFDFT methods based on the adiabatic response from
GGA functionals, in Table IV we compare the computational
wall time of TD-OFDFT simulations carried out with GGA
(LKT) and nonlocal (LMGP) adiabatic responses for the Pauli
potential with the computational time of the same TD-OFDFT
methods on top of the KS “exact” density as well as the

TABLE IV. Wall times for OF-TDDFT and TD-DFT simulations
on the six systems considered in this work measured in seconds ×
CPU/step for a variety of methods. This table follows the nomencla-
ture introduced in Table II.

KEDF for n0 Exact LMGP Exact
vP for δn(t ) LKT+JP LMGP+JP Exact

Mg8 3 16 32
Mg50 4 49 674
Na55 3 44 328
Si30 17 163 197
Si30H40 23 210 446
Ga4As4 11 119 120

LMGP density. Overall, we see a two orders of magnitude
reduction in computational cost with TD-DFT and a one
order of magnitude reduction compared to using nonlocal
KEDFs in TD-OFDFT as the system size used for this work.
The TD-OFDFT computational cost is best for large systems
as TD-OFDFT scales linearly with the system size. However,
the computational cost for the KS ground-state density would
also increase. Therefore, for very large systems it is better
to use the ground-state density from nonlocal KEDFs as the
initial condition.

IV. CONCLUSION

We propose time-dependent orbital-free DFT as a viable
alternative to regular time-dependent DFT when large sys-
tem sizes need to be modeled. In this paper, we explore
the possibility of employing computationally cheap semilocal
functionals for computing the adiabatic response to exter-
nal perturbations and a current-dependent approximation for
computing the nonadiabatic part of the response. Our simu-
lations confirm that TD-OFDFT can quantitatively reproduce
the spectra of metallic systems provided that the ground-state
density is of good quality. The situation is more delicate
when semiconductors are considered. In this case, the current-
dependent nonadiabatic response derived from the uniform
electron gas is not quantitative as it misses interband transi-
tions. Our work sets the stage for using a GGA-level adiabatic
response for the Pauli potential in OF-TDDFT simulations
achieving one order of magnitude improvements for the com-
putational time to solution compared to TD-OFDFT carried
out with nonlocal Pauli potentials. Compared with standard
TD-DFT, the timings are cut down by roughly two orders of
magnitude.
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