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a b s t r a c t

Orbital-free density functional theory (OF-DFT) is a promisingmethod for large-scale quantummechanics
simulation as it provides a good balance of accuracy and computational cost. Its applicability to large-
scale simulations has been aided by progress in constructing kinetic energy functionals and local
pseudopotentials. However, the widespread adoption of OF-DFT requires further improvement in its
efficiency and robustly implemented software. Here we develop a real-space finite-difference (FD)
method for the numerical solution of OF-DFT in periodic systems. Instead of the traditional self-
consistentmethod, a powerful scheme for energyminimization is introduced to solve the Euler–Lagrange
equation. Our approach engages both the real-space finite-difference method and a direct energy-
minimization scheme for the OF-DFT calculations. The method is coded into the ATLAS software package
and benchmarked using periodic systems of solid Mg, Al, and Al3Mg. The test results show that our
implementation can achieve high accuracy, efficiency, and numerical stability for large-scale simulations.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Computational simulation is a powerful tool for predicting ma-
terial properties and understanding the physics underlying exper-
imental observations [1]. Reliable simulation relies on advanced
computational theories and methods, and in recent decades
many efficient approaches with different levels of accuracy have
emerged to receive remarkable success; e.g., quantum-mechanical
[2–4] and empirical potential methods [5,6].

Quantum mechanical approaches based on the Kohn–Sham
(KS) density functional theory (DFT) [2,3] allow accurate descrip-
tions of materials’ properties, but are computationally demand-
ing. They require evaluation of the kinetic energy term related
to the computation of single-electron wave-functions. The calcu-
lation of electron density needs to consider 3Ne degrees of free-
dom, and thus the computational cost scales as a cubic relation of
O(N3

e ) [7], where Ne is the total number of electrons of the system.
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The large computational cost limits KS-DFT to only small systems
with unit cells of up to only hundreds or thousands of atoms [7],
which makes its traditional implementation unsuitable for study-
ing complex systems (e.g., surfaces, interfaces, nanomaterials, and
biomaterials) ormacro-scale features (e.g., grain boundaries, dislo-
cations, and cracks) that require large-scale simulations using cells
of tens of thousands or millions of atoms [1,8].

Over the past two decades, many linear scaling techniques
have been developed in an effort to reduce the cubic scaling
of traditional KS-DFT [4,9]. However, they depend on both the
‘‘nearsightedness’’ principle [4,9] and the concept of ‘‘locality’’ [10],
and therefore scale linearly only for systems containing a large
number of atoms. There is an unavoidable crossover between cubic
and linear scaling [1,4,9]. Moreover, linear scaling requires a band-
gap structure or localized electronic structure, and appears not to
function for metals [1,8].

Alternative approaches related to parameter fitting have
therefore been designed using empirical interatomic potentials
[5,6]. These simulations require much less computational cost and
are computationally capable of dealing with macro-scale prob-
lems, but they suffer notable shortcomings in terms of accuracy
and transferability [1,8]. More severely, these simulations com-
pletely neglect the properties of electrons, which are fundamen-
tally important to various aspects of chemistry and physics. There
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is therefore an urgent need for a reliable quantum-mechanics-
based method able to perform large-scale simulations.

Orbital-free (OF) DFT [11–15], is potentially an efficient theory
for large-scale quantum mechanical simulations. The total energy
within the OF-DFT scheme is expressed as an explicit functional of
electron density in the Hohenberg–Kohn theorem [2], and there is
no need to deal with wave functions. Here the electron density,
a simple function with three degrees of freedom, can uniquely
determine the ground-state properties of a many-electron system.
As such, the computational cost of OF-DFT scales quasilinearly
with the number of atoms in the system, providing substantial
advantages in numerical simplicity and efficiency for large-scale
simulations [11–15].

The drawbacks of OF-DFT include two challenges to its realis-
tic treatment of the kinetic energy density functional (KEDF) and
ion–electron interactions [13]. First, the kinetic energy term is a
sole functional of the electrondensity function; its constructionde-
termines the accuracy of OF-DFT, and significant progress has been
made in the last two decades (Refs. [16–27]) with the proposal of
various encouraging KEDFs. These functionals have been success-
fully tested in many systems, including nearly free-electron-like
systems and semi-conductors [28–30]. Second, the lack of par-
ticular orbitals leads the ion–electron interaction to be described
only by the local pseudopotentials (LPPs), and previous studies
have sought to construct various LPPs. Empirical [12,14,15,31,32]
and ‘‘bulk derived’’ LPPs [33] have been developed and successfully
applied to various metals and semiconductors [8,28], but a notable
challenge is the construction of a good LPP from an existing non-
LPP without appeal to any bulk- or aggregate-system KS calcula-
tions [13]. We recently developed an optimized effective potential
(OEPP) scheme to construct full first-principles LPPs from existing
non-LPPs [34] to enhance the transferability of the pseudopoten-
tial. Our OEPP worked well for a large number of elements, and the
transferability of the LPP was found to be an intrinsic property of
elements.

The ground-state energy Emin and electron density ρ in OF-DFT
[13,15] can be obtained by minimizing the total energy E[ρ] of the
system with respect to the trial electron density ρ. The following
minimization equation is non-linear and multidimensional [35]:

Emin = min
ρ


E[ρ] − µ


Ω

ρ(r)dr − Ne


; ρ ≥ 0


, (1)

whereµ is a Lagrangemultiplier used to enforce the constraint that
the total number of electrons Ne is conserved, and Ω is the whole
space for the simulation.

Currently, there are two main procedures for solving Eq. (1)
[13]. The first is to seek a direct solution of the equation by
minimizing the total energy with respect to the electron density ρ
[35–38]. The well-known PROFESS code was built this way [35,39,
40], and has been successfully used to investigatemany large-scale
problems [41–43]. The other procedure is to transform Eq. (1) into
an ordinary KS-like equation that can be solved self-consistently by
any KS computer program [44–46]. However, recent research [13,
47,48] has shown that the iterative self-consistent procedure for
OF-DFT does not work properly for large systems. Moreover, the
non-convergence problem is not solved, and the underlying reason
for this remains unclear [13].

In this work, a real-space finite-difference method for solving
the OF-DFT Euler–Lagrange equation (Eq. (1)) for periodic systems
is developed by direct minimization. As shown previously, a real-
space finite-difference method provides three obvious advantages
[49–52]: (i) the method is independent of any basis, simplifying
its implementation [53]; (ii) a real-space method is advantageous
for large-scale parallel calculations due to its avoidance of the
fast Fourier transform (FFT) method for the reciprocal-space
approach and the serious drawback in the need for ‘‘all-to-all
communication’’ [9] during parallel calculation; and (iii) there is no
barrier to switching between a periodic and a non-periodic system
for a real-space approach. Particularly, we find that the finite-
difference method is computationally more efficient in dealing
with the Laplace, gradient, and divergence operators than the FFT-
based method.

Our method is coded into Ab initio orbiTaL-free density
functionAl theory Software (ATLAS) and is benchmarked in
periodic systems ofMg, Al, andAl3Mg.Our current implementation
of OF-DFT is shown to be numerically accurate, stable, and efficient.

The remainder of this paper is organized as follows. Section 2
gives the theory. The OF-DFT differential equation is presented
for illustration, followed by detailed real-space representations of
the finite-difference method and the direct energy minimization
method to obtain the ground-state electron density. Section 3
reports testing results onMg, Al, andAl3Mgcrystals to demonstrate
the computational accuracy, efficiency, and stability of the
procedure. Finally, conclusions are presented in Section 4.

2. Theory and background

2.1. OF-DFT theory

In the OF-DFT scheme [13,15], the ground state total energy
of an N-electron system in a local external potential Vext(r) is a
functional of electron density ρ(r):

Ω

ρ(r)dr = Ne. (2)

The total energy functional E[ρ] (atomic units, a.u., are used
throughout the paper) can be written as follows [13,15]:

EOF
[ρ] = T [ρ] + EH [ρ] + EXC [ρ] +


Vext(r)ρ(r)dr

+ Ei−i({Ri}), (3)

where EH [ρ] is the Hartree repulsion energy, EXC [ρ] the ex-
change–correlation energy, and Vext(r) the external potential rep-
resenting the ion–electron interaction as given by local pseudopo-
tentials in the OF-DFT scheme. Ei−i is the interaction energy be-
tween ions, which is dealt with in our implementation using Ewald
summation [54–56]. The kinetic energy of the non-interacting
electrons (T [ρ]) is an explicit functional of electron density. These
KEDFs can be roughly categorized into two general types: lo-
cal/semilocal and nonlocal. The former naturally scales linearly
with system size, while the later scales quadratically owing to its
double integral [57]. Our program implements both local/semilocal
KEDFs [58,59] and the nonlocalWang–Govind–Carter (WGC) KEDF
[22]. The WGC KEDF can be written as follows:

TWGC
[ρ] = TTF [ρ] + TvW [ρ] + Tnl[ρ], (4)

where TTF [ρ] is the Thomas–Fermi term assuming the limit of a
uniform electron gas. It takes the form

TTF [ρ] = CTF


Ω

ρ5/3(r)dr, (5)

where CTF =
3
10 (3π

2)2/3. TvW [ρ] is the von Weizsäcker (vW) term
designed for a single-orbital system:

TvW [ρ] =


Ω


ρ(r)


−

1
2
∇

2
 

ρ(r)dr. (6)

The third non-local term has the form

Tnl[ρ] =


ρα(r)k[ρ(r), ρ(r), r, r ′]ρβ(r ′)drdr ′. (7)
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This non-local term Tnl[ρ] is Taylor expanded to achieve quasilin-
ear scaling with system size via FFT [22,38].

Our approach decomposes the KEDFs into the λTvW term and a
remaining term Tθ [ρ] (which, when λ = 1, is the Pauli term [13]):

T [ρ] = λTvW [ρ] + Tθ [ρ]. (8)

The vW kinetic potential term can be evaluated as follows:

δTvW [ρ]

δρ
=

1
√

ρ


−
∇

2

2


√

ρ. (9)

The finite-difference method is adopted here to obtain the vW
kinetic potential term instead of FFT, as implemented in PROFESS
[35].

Instead ofminimizing EOF directly over the electron density, we
rewrite the total energy as the functional of φ =

√
ρ. Taking the

constraint of Eq. (2) into account by Lagrange’s multiplier method,
we define

L[φ] = EOF
[φ] − µ


Ω

φ2(r)dr − N


, (10)

then the gradient of Lwith respect to φ is

δL[φ]
δφ
=

δEOF
[ρ]

δρ

δρ

δφ
− 2µφ

= 2


δE[ρ]
δρ
− µ


φ

= 2 {Hφ − µφ} , (11)

where

Hφ = −
λ

2
∇

2φ(r)+ Veff (r)φ(r). (12)

This equality is derived from Eq. (9) and

Veff (r) =
δTθ [ρ]

δρ
+

δEH [ρ]
δρ

+
δEXC [ρ]

δρ
+ Vion(r)

= Vθ (r)+ VH(r)+ VXC (r)+ Vion(r). (13)

The variational principle requires δL/δφ = 0, which leads to the
Euler–Lagrange equation:

Hφ = µφ. (14)

This is a Schrödinger-like equation [13,44–46,60], but much
simplified as there is only one ‘‘orbital’’ with the minimal
eigenvalue. This equation can then be resolved by minimizing the
OF-DFT total energy with respect to

√
ρ.

2.2. Real-space representations

Real-space calculations are performed on grids, in which the
values of the electron density distribution and effective potential
are given on discrete Cartesian grid points. The real-space finite-
difference expansion transforms the kinetic energy operator into
a spare matrix, which has nonzero elements only in the vicinity
of the leading diagonal [51,52]. The general form of the Laplacian
with a Cartesian grid can be expressed as follows:

∇
2φ(xi, yj, zk) =

N
n=−N

Cnφ(xi + nhx, yj, zk)

N
n=−N

Cnφ(xi, yj + nhy, zk)

N
n=−N

Cnφ(xi, yj, zk + nhz), (15)
where N is the order of the finite difference expansion; hx,
hy, and hz are the grid spacings in the x, y, and z directions,
respectively; and the Cn coefficients are available in Refs. [51,61].
It is noteworthy that the FD coefficients are derived from a Taylor-
series expansion of the desired function. Thus, the truncation
error exists during minimizing the total energy functional using
the FD method because it does not satisfy the variational
principle [51]. However, in general the net error is within the
error of OF-DFT and can be ignored when reasonable order of
expansion and grid spacing of FD are employed to perform the
calculations. Furthermore, the Cartesian grid is incompatible with
the periodicity of a non-orthorhombic unit cell. A new high-order
finite-difference method for a non-orthorhombic grid has been
proposed and successfully applied to periodic systems [62]. We
adopt it here. The general form of the Laplacian operator for a non-
orthorhombic grid is as follows:

∇
2
=

6
i=1

fi
∂2

∂v2
i
. (16)

We represent the Laplacian by a combination of derivatives
along six nearest-neighboring vi directions: three original ai
(i = 1, 2, 3) directions and three additional nearest-neighboring
directions, where ai are the lattice vectors in real space. For the
fi coefficient, refer to Ref. [62]. Note that the H matrix (Eq. (14))
is a spare matrix whose nonzero elements are confined within
a diagonal band, and the extent of the nonzero elements in off-
diagonal positions depends on the order of the finite difference
expansion. The Hartree potential is determined by solving the
Poisson equation:

∇
2VH(r) = −4π [ρ(r)− ρ0(r)], (17)

using FD method with conjugate gradients (CG) algorithm [63],
where ρ0(r) is the average electron density of the system. For in-
finite periodic systems, we encountered the divergent problems
on the ion–electron, ion–ion, and electron–electron interaction
energies arising from the long-range Coulomb interaction −Z/r .
Fortunately, the divergent problem converts into the singularity
problem at g = 0 in reciprocal space. For a charge-neutral sys-
tem, the singularity for Hartree electron–electron potential can
be exactly canceled by adding up singularities encountered in
the electron–ion and ion–ion potentials, and can therefore be ne-
glected [35,64]. TheHartree potentialVH(r) can thus be obtained as
follows:

VH(r) = FFT ′


4π
|G|2

ρ(G)


(ρ(G = 0) = 0), (18)

where ρ(G) is the electron density in reciprocal space, and FFT ′ is
a reverse FFT transform.

In fact, both real space (Eq. (17)) and FFT-based (Eq. (18))
formulations of Hartree potential are employed in our approach.
However, our studies indicate that computational cost (time and
storage) to calculate the Hartree potential using FFT-basedmethod
is lower than real space FD method for the systems (Natom/cell
<10,000), in which parallel calculations are not required. Thus, the
FFT-basedmethod is adopted to calculate Hartree potential for this
work.

The ionic term Vion(r) in Eq. (13) can be constructed from Vloc(r)
(i.e., LPPs). We use our developed OEPP for LPPs. OEPPs for both
Mg and Al are shown in Fig. 1(a) and 1(b), respectively. The theory
of constructing OEPP is presented elsewhere [34]. For a periodic
system, the ionic potential receives contributions from an infinite
number of atoms, leading to a divergent summation of the long-
range Coulomb term. To seek a solution, as mentioned above, the
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Fig. 1. Local optimized effective pseudopotential of Mg (a) and Al (b) in real space.

pseudopotential Vion(r) is then expressed in reciprocal space as
follows [7,64]:

Vion(G) ≡
1

Ωcell


Ωcell

Vion(r)exp(iG · r)dr

=
1

Ωcell

ntype
κ=1

Sκ(G)V κ
loc(G), (19)

where ntype is the number of atomic species, and for each atomic
species κ there are nκ identical atoms at positions τκ,j, j = 1, nκ ,
and Ωcell is the unit cell volume. The structure factor S(G) for each
atomic species κ is [64]

Sκ(G) =

nκ
j=1

exp(iG · τκ,j), (20)

and the form factor Vloc(G) is [64]

V κ
loc(G) =


allspace

V κ
loc(r)exp(iG · r)dr. (21)

The spherical symmetry of LPP allows the 3D Fourier transform to
be represented by a 1D radial Fourier transform [35,64]:

V κ
loc(g) = 4π


∞

0
V κ
loc(r)r

2 sin(gr)
gr

dr

= V κ
nc(g)−

4πZ
g2

(g ≠ 0), (22)
where g = |G| and the non-Coulomb potential V κ
nc(g) in reciprocal

space can be written as

V κ
nc(g) = 4π

 rcut

0


V κ
loc(r)+

Z
r


r2

sin(gr)
gr

dr. (23)

At g = 0, the Coulomb interaction is canceled as described above,
leading to

V κ
loc(g = 0) = 4π

 rcut

0
(r2V κ

loc(r)+ Zr)dr, (24)

where rcut is the cutoff of core radii. In our implementation, Vloc(r)
is equal to−Z/r when r ≥ rcut .

For a given grid spacing h, the size of the grid points can be
determined as

3
i=1 Ni, where

Ni =
|ai|

h
. (25)

For a given structure, the wave vector G is determined by

G(n1, n2, n3) = n1b1 + n2b2 + n3b3, (26)

where bi (i = 1, 2, 3) are the primitive vectors in reciprocal space,
and ni = (0, 1, 2 · · ·Ni) are integers.

Finally, the real-space local ion–electron pseudopotential
Vion(r) can be calculated by an FFT:

Vion(r) = FFT (Vion(G)). (27)

Notably, a newmethod has been proposed to eliminate the FFT
and Ewald summations. In this method, the electrostatic interac-
tions (ion–electron, electron–electron, and ion–ion interactions)
can be replaced by the equivalent localized charge distributions
and boundary conditions in real space [65,66]. Specially, the en-
tire electrostatic potential and energy can be obtained by solving
one Poisson equation using multigrid method in real space, which
exhibits rigorous linear scaling [51,52,67,68]. It is well suited for
large scale, parallel computations due to no requirements of FFT or
reciprocal lattice summations and we will implement it into our
ATLAS code.

As mentioned above, all the physical quantities in the real-
space finite-difference formalism can be directly represented on
discretized grid pointswith a uniform interval [62]. Finally, Eq. (12)
can be expressed as the following discretized expression:

Hφ(ui, vj, wk)

= −
λ

2


N

n1=−N

Cn1φ(ui + ξ11n1h, vj + ξ12n1h, wk + ξ13n1h)

+

N
n2=−N

Cn2φ(ui + ξ21n2h, vj + ξ22n2h, wk + ξ23n2h)

+

N
n3=−N

Cn3φ(ui + ξ31n3h, vj + ξ32n3h, wk + ξ33n3h)

+

N
n4=−N

Cn4φ(ui + ξ41n4h, vj + ξ42n4h, wk + ξ43n4h)

+

N
n5=−N

Cn5φ(ui + ξ51n5h, vj + ξ52n5h, wk + ξ53n5h)

+

N
n6=−N

Cn6φ(ui + ξ61n6h, vj + ξ62n6h, wk + ξ63n6h)


+ [Vion(ui, vj, wk)+ VH(ui, vj, wk)+ VXC (ui, vj, wk)

+ Vθ (ui, vj, wk)] × φ(ui, vj, wk), (28)
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Fig. 2. Flow chart of ATLAS.

where Cni = ficni , N is the order of the finite-difference expansion.
The choice of ξ as −1, 0, or 1 depends on the lattice vectors
of the crystal. Given that the Laplacian operator extends to only
a few neighbors around each grid point, Eq. (28) is a sparse
matrix. We solve it here to obtain the minimum energy EOF

min[ρ]
by implementing an energy-minimization scheme. Previousworks
have shown that the Truncated Newton (TN) method [69] is one
of the most efficient [35–37]; therefore, it is employed in our
approach.

2.3. Algorithm for energy minimization

Our scheme selects
√

ρ as the variable to minimize the total
energy. The flow chart of ATLAS code is shown in Fig. 2. The
procedure followed comprises three major steps. First, an initial
guess of the electron density ρ0 is required for a trial solution ofφ2.
Note that the initially guessed electron density is derived from the
model of a homogeneous electron gas (the average charge density
of the system).

Second, the ground-state electron density is obtained by
minimizing the total energy using the TN method based on the
initial guess. The TN algorithm for energy minimization consists
of two iterations: an outer iteration that approximates the descent
direction p as the direction for minimizing energy, and an inner
iteration that determines the step size θ by a line search to ensure
an energy decrease [35–37,69]. The details of this step include
three procedures.

(i) According to the TN scheme, the search direction |pk⟩ at
iteration k is simply determined by the quantities of the current
iteration. |pk⟩ can be written as follows:

|pk⟩ = −A−1k |gk⟩, (29)

where |gk⟩ is the gradient of Lk(φ) according to Eq. (11), which can
be written as

|gk⟩ = 2 {Hk|φk⟩ − µk|φk⟩} , (30)

with

µk ≡
⟨φk|Hk|φk⟩

Ne
. (31)
Ak is the approximate Hessian matrix of Lk:

Ak =
δ2Lk

δφ(r)δφ(r ′)
. (32)

As in previous works [35,36], we rewrite Eq. (29) as a linear
equation to determine |pk⟩:
Ak|pk⟩ = −|gk⟩. (33)
This equation can be solved using the linear conjugate gradient
method [70]. We compute Ak|p⟩ using the first-order finite-
difference approximation rather than attempt the explicit evalu-
ation of Ak:

Ak|p⟩ ≈
|g(φ + ϵp)⟩ − |g(φ)⟩

ϵ
. (34)

This ensures that the computational cost of our approach is linear
scaling.

(ii) The step size θk is determined by line search with the
normalization constraint of |φk+1⟩. |pk⟩ is further orthogonalized
to |φk⟩ and normalized to Ne.

|φ
′
⊥

k ⟩ = |pk⟩ −
|φk⟩⟨φk|

Ne
|pk⟩ (35)

|φ⊥k ⟩ =


Ne

⟨φ
′⊥

k |φ
′⊥

k ⟩
|φ
′
⊥

k ⟩ (36)

|φk+1⟩ then is updated by

|φk+1⟩ = |φk⟩ cos(θk)+ |φ⊥k ⟩ sin(θk), (37)
where the value of θk is determined by line search [63,71,72] with
the Wolfe conditions to ensure it lies toward lower energy [37].
θk ← min

θ
E [φk+1(r, θ)] . (38)

(iii) When the step size θk is determined, the new electron
density can be derived by ρk+1 = φ2

k+1. The process is repeated
until both the gradient of Lagrange |g⟩ and the variation of total
energy are smaller than the given tolerances.

Finally, the third step involves calculating the total energy or
other related physical quantities of a given structure from the
ground-state electron density.

3. Numerical results

We consider here three bulk systems of Mg, Al, and Al3Mg to
benchmark the above formalism (as implemented in our ATLAS
code) for accuracy and computational efficiency. The calculation
employs the local density approximation (LDA) for electron
exchange and correlation as parametrized by Perdew and Zunger
[73,74]. The local pseudopotentials of Mg and Al are constructed
by our OEPP scheme for their respective electronic configurations
of 3s13p1 and 3s23p1. The core cutoff radii are 2.6 a.u. for Mg and
2.2 a.u. for Al.

3.1. Tests of real-space OF-DFT convergence

Our real-space finite-difference implementation of OF-DFT has
two controllable parameters that critically influence the accuracy
of the calculations: the order of finite difference expansion and
the grid spacing h. These parameters are chosen depending on
the convergence test of the total energies of the systems. The grid
spacing in real space is related to the plane-wave cutoff energy
(Ecut = π2/2h2) in reciprocal space. Here we show in a real
application how to choose the values of these parameters. We run
ATLAS code on calculations of total energy for bulkMgwith a body-
centered cubic (bcc) lattice. Fig. 3 shows that a fourth-order finite-
difference expansion and a grid spacing of 0.18 Å are sufficient for
a well-converged total energy (0.1 meV/atom). Similar results are
also found for bulk Al. Therefore, these two values are adopted for
all the following calculations on systems of bulkMg, Al, and Al3Mg.
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Fig. 3. Effect of (a) grid spacing and (b) order of finite-difference approximation on
the total energy of bulk Mg with a bcc lattice.

3.2. Computational accuracy

For benchmarking our ATLAS program, bulk properties of
hexagonal close-packed (hcp) Mg and face-centered cubic (fcc)
Al and Al3Mg are calculated and compared with those calculated
by the CASTEP code [75] within KS-DFT. Our ATLAS calculations
employ the WGC formula for KEDF [22] (with the following
parameters: γ = 2.7, α = (5+

√
5)/6, and β = (5−

√
5)/6) and

the OEPP local pseudopotential. Note that the WGC form of KEDF
is known to describe accurately various bulk properties of Mg and
Al. For meaningful comparison, the CASTEP calculations adopted
the same OEPP local pseudopotentials as used in our method. The
calculated equilibrium volumes, total energies, and bulk moduli
are listed in Table 1. Our ATLAS results are in excellent agreement
with those obtained by CASTEP; the noticeable small differences
stem from the difference between the kinetic energy terms used in
the two codes.

We now focus on the fundamental quantity of electron density
as calculated by the ATLAS and CASTEP codes. Fig. 4 shows that
the two calculations give essentially identical contour plots of
electron density in the (001) and (011) planes for Al and the
(0001) and (0110) planes for Mg, thus supporting the accurate
implementation of OF-DFT in ATLAS code. Further validation of our
method is given by randomly generating ten different structures of
Mgusing the CALYPSO software package [76,77] as listed in Table 2,
and then calculating their total energies using both codes with
Table 1
Bulk properties obtained by OF-DFT and KSDFT methods: equilibrium volume (V0

per atom in Å3), total energy (E0 in eV per atom), and bulk moduli (B0 in GPa).

Systems Methods V0 E0 B0

Mg KS 22.023 −24.588 36.5
OF 22.225 −24.577 35.0

Al KS 18.029 −56.799 69.4
OF 18.435 −56.801 67.4

Al3Mg KS 19.031 −48.767 55.2
OF 19.019 −48.757 57.5

the same OEPP. The results (Fig. 5) show expected small energy
differences between the two sets of data, but both calculations
give essentially identical structure sequences in energy order,
providing further confidence in the robustness of our ATLAS code.
To verify the correctness of our new implementation, we calculate
the total energy ofMg, Al, Al3Mg, and othermore complex systems
(e.g., distorted structures of fccMgwith big cells containing atomic
distortions following a frozen phonon at the smallest wave vectors
and with the length of the longest cell vector varying from 14.2
to 142 Å) using PROFESS [35] with the same OEPP and KEDF
(e.g., TFλvW λ = 1, 1/5, 1/9) as used in ATLAS. The results show
that the energy difference obtained between ATLAS and PROFESS
is less than 0.1 meV/atom for all these systems.

3.3. Computational efficiency

Note that a prominent difference betweenourmethod andprior
works [35] is that the vW term is evaluatedwith a finite-difference
expression instead of the FFT-based approach. The (wall) times
for calculating vW kinetic potential for different sizes of grid
points via fourth-order finite-difference expression and the FFT-
based method using FFTW [78] are shown in Fig. 6. The finite-
difference approach is clearly computationally more efficient than
the FFT method, especially for denser grid points. This is due to
the different size dependence of the two methods. Assuming N
is the number of grid points, the computational cost of the finite-
difference method is proportional to O(N), whereas that of FFT is
proportional toO(N logN). Note that our approach shows a similar
advantage in dealing with the generalized gradient approximation
(GGA) kinetic potentials relating to the gradient and divergence
operators.

A further test of the computational efficiency of the ATLAS
software package is given in the analysis of bcc Mg. Fig. 7 shows
the (wall) times for calculations of ion–electron potential terms, all
other potential terms in Eq. (13), and the total energies within the
course of an electron density optimization on systems containing
10–10,000 atoms using a single processor. For comparison, single-
processor calculations are also performed using the DFT code of
CASTEP for systems containing up to 240 atoms. Both systems use
the same exchange–correlation functional and OEPP. As expected,
ATLAS shows a substantial advantage in computational efficiency
over KS-DFT calculation. Note that the number of iterations to
reach convergence (8–10) changes little with system size. Our
method therefore shows strong potential applicability to large-
scale simulation.

In fact, the computational cost of ATLAS shows quadratic scaling
instead of linear, because the ion–electron potential term involving
an explicit treatment of structure factors scales quadratically for
a periodic system [8]. To avoid the quadratic scaling problem, a
particle-mesh Ewald algorithm, which has linear scaling for the
ion–electron term, will be implemented in ATLAS for periodic
systems [8,56,79].
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a b

c d

Fig. 4. Contour plots of electron density calculated by ATLAS (solid line) and CASTEP (dotted line). (a) The (001) and (b) (011) planes of Al; (c) the (0001) and (d) (0110)
planes of Mg. Electron density and lattice vectors are given in Å and (a.u./100), respectively.
Fig. 5. Relative energy differences between the first structure and another nine
structures of Mg generated by CALYPSO. The numbers along the horizontal axis
correspond to the structures in Table 2, which lists their detailed structural
information.

3.4. Numerical stability

The calculations for the Mg, Al, and Al3Mg systems show
that ATLAS is numerically stable with TFλvW and WGC KEDF.
However, previous works [13,57] have indicated that procedures
implementing most GGA KEDFs are numerically unstable. In the
previous implementation, the numerical evaluation of gradient
and divergence operators used the FFT. In our method, we adopted
Fig. 6. Timings (wall time) used to calculate vW kinetic potential in different
numbers of grid pointswith both the finite-difference expression and the FFT-based
method.

the finite-difference method to evaluate these operators for all the
GGA KEDFs [58,59], and tested our method using several systems
(e.g., Al and Mg with fcc, bcc, hcp, and sc structures). The re-
sults indicate that ATLAS with GGA KEDFs is also numerically un-
stable except for TFλvW, E00, and P92, which is consistent with
previous work [57]. Therefore, we believe that the numerical in-
stabilities of most GGA KEDFs originate from unphysical electron
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Table 2
Details of ten random structures of Mg generated by CALYPSO.

Structure no. Space group (Number) Lattice parameters Wykoff position

1 P21/c (14) a = 2.9688 Å 4e−0.51477 0.74802−0.24572
b = 4.7352 Å 4e−0.78771 0.52847−0.60354
c = 11.5362 Å 2d 0.50000−0.00000−0.50000
β = 112.3421◦

2 P − 6m2 (187) a = b = 5.6880 Å 1b 0.00000 0.00000 0.50000
c = 2.6768 Å 1d 0.33333 0.66667 0.50000

3j 0.81547 0.18453 0.00000

3 Ima2 (46) a = 4.2219 Å 4a 0.00000 0.00000 0.07444
b = 8.5195 Å 4b 0.25000 0.29658 0.01732
c = 8.3406 Å 4b 0.25000−0.16647 0.26886

4b 0.25000 0.55467 0.11780
4b−0.25000 0.68084 0.26549

4 P3m1 (156) a = b = 5.6997 Å 1a 0.00000 0.00000 0.23588
c = 5.3316 Å 1a 0.00000−0.00000 0.65630

1b 0.33333 0.66667 0.52999
1c 0.66667 0.33333 0.65311
3d 0.18246 0.81754 0.99311
3d 0.50622 0.49377 0.25310

5 Pnn2 (34) a = 4.6491 Å 4c 0.22362 0.16685 0.57664
b = 11.0429 Å 4c 0.70660 0.63845 0.95432
c = 2.9217 Å 2a 0.00000 0.00000 0.08609

6 P4/mmm (123) a = 5.9328 Å 1c 0.50000 0.50000−0.00000
b = 5.9328 Å 1d 0.50000 0.50000 0.50000
c = 4.2617 Å 4l 0.32079 0.00000−0.00000

4m 0.29232 0.00000 0.50000

7 P4 (75) a = b = 5.7234 Å 4d 0.70357 0.72197 0.85041
c = 4.5792 Å 1a 0.00000 0.00000 0.33461

1a 0.00000 0.00000 0.85646
2c 0.00000 0.50000 0.03534
2c 0.00000 0.50000 0.49923

8 P2221 (17) a = 5.3893 Å 4e 0.69544 0.72370 1.34282
b = 4.7685 Å 2a 0.95451 0.00000 0.50000
c = 5.8367 Å 2a 0.41997 0.00000 0.50000

2c 0.00000 0.67949 0.75000

9 P2 (3) a = 6.2958 Å 2e−0.66003−0.52140 1.47599
b = 7.6726 Å 2e−0.73000−0.98151 1.40517
c = 3.1136 Å 2e−0.15425−0.13749 1.09614
β = 94.1982◦ 2e−0.74070−0.72248 0.96147

1b−0.00000−0.69511 0.50000
1c−0.50000−0.34474 1.00000

10 Pmna (53) a = 3.3393 Å 2b 0.00000 0.00000 0.50000
b = 7.5958 Å 4h 0.50000 0.30656 0.43343
c = 5.9138 Å 4h 0.50000 0.75004 1.12286
density produced by the singular and unphysical kinetic potential
[13,14,57] during the process of optimizing the electron density.

4. Conclusion

Wedeveloped an efficient ab initiomethod for the numerical so-
lution of OF-DFT for large-scale simulations on periodic systems,
and coded it into the ATLAS software package. Our method em-
ploys the real-space finite-difference formulation and the scheme
of energy minimization to yield both computational accuracy and
efficiency for large-scale simulations. The performance of our
method is well tested by designed static simulations for periodic
systems of Mg, Al, and Al3Mg, as well as comparison with data ob-
tained by previous OF-DFT (PROFESS) and KS-DFT software pack-
ages (CASTEP). The results reveal that, except for the ion–electron
term, the computational costs of the calculations of all other po-
tential terms scale linearly with system size for periodic systems.
Our future developments of ATLAS code will focus on the imple-
mentation of entire real-space multigrid method [67] to achieve
linear scaling on the all electrostatic interactions terms [65,66],
more efficient algorithms for energy minimization, compatibility
with non-periodic systems, parallel computing, and the evaluation
of force and stress for ion and cell relaxations. We believe that
ATLAS will become an alternative method for large-scale ab initio
simulations.
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Fig. 7. Timings (wall time) using ATLAS to calculate the total energy within the
course of an electron-density optimization for systems of 10–10,000 atoms in a
simulated bcc Mg cell. The total time (blue line) is shown as the sum of the times
for the ion–electron potential term (black line) and for all other potential terms
and energy terms (green line). Also shown is the total time (wall time) cost for
static energy calculation on systems of 2–240 atoms using CASTEP (red line). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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