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1. Introduction

Kohn–Sham density functional theory (KS-DFT) [1,2] is the most 
widely used approach for ab initio electronic structure simulations 
and has been employed for scientific discoveries across a broad 
range of disciplines such as chemistry, physics, and materials sci-
ence. The success of KS-DFT is due to the good balance between 
computational cost and accuracy. However, due to its cubic scaling 
with respect to the number of electrons, Ne , KS-DFT calculations 
are limited in the system sizes they can approach.

Several alternative approaches have been proposed to access 
system sizes that relate to experimentally relevant microstates. 
Among them, we recall linear-scaling KS-DFT [3–6], orbital-free 
DFT (OF-DFT) [7–14], subsystem-DFT (sDFT) [15–22], a combina-
tion of the two [23] and others [24,25]. These approaches can 
achieve (quasi)-linear scaling by exploiting specific features, such 
as the “nearsightedness” of the electronic structure which arises in 
many non-conductive systems [3,5].

sDFT adopts a divide-and-conquer strategy, whereby a system is 
split into smaller but interacting subsystems. In this way, the cubic 
scaling of conventional KS-DFT can be reduced. Linear scalability 
in sDFT is achieved by modeling the interactions between sub-
sytems with pure density functionals: the nonadditive exchange-
correlation (NAXC), the nonadditive kinetic energy (NAKE), and the 
long-range Coulomb interaction between the subsystems’ charge 
densities. Among them, the only available exact functional is the 
Coulomb interaction while the other two need to be approximated. 
Thus, the accuracy of sDFT is dictated by NAKE and NAXC.

In this work, we present version 2.0 of embedded Quantum 
ESPRESSO (eQE) [26], a code that implements sDFT based on Quan-
tum ESPRESSO [27–29]. In the first release of eQE [26], we success-
fully implemented semilocal (GGA) level nonadditive functionals 
for both NAXC and NAKE with the following main features: (1) a 
scheme of parallel execution to distribute the workload across sub-
systems resulting in low data communication achieving high paral-
lel efficiency, (2) ab initio molecular dynamics (AIMD), and (3) ap-
plicability to periodic systems. Many large systems currently out-
side KS-DFT’s realm of applicability have been successfully studied 
by eQE [30–36].

eQE 2.0 is capable of deploying nonlocal and meta-GGA (mGGA) 
XC and NAKE functionals yielding highly accurate simulations of 
weakly interacting subsystems. It is well known that, due to their 
dependence on the density and its derivative in only one point, 
semilocal XC functionals inherently lack the ability to capture 
intermediate-range and long-range dispersion interactions [37–45]. 
However, dispersion interactions play a crucial role in systems that 
are weakly bound and amenable to be treated by sDFT. mGGA and 
nonlocal XC functionals address these issues as mGGAs capture 
intermediate-range correlations due to their dependence on higher 
order derivatives of the density beyond the gradient or the kinetic 
energy density. Nonlocal functionals capture long-range dispersion 
interactions because they encode a dependency on the density on 
more than a single point at a time.

As mentioned, GGA NAKEs are widely used [18,19,16]. How-
ever, due to their inability to describe the inherent non-locality of 
the kinetic energy, GGAs work well only when the inter-subsystem 
density overlap is weak. In principle, nonlocal NAKEs have the po-
tential to obtain more reliable results [8,15] than GGAs. In practice, 
however, most of the available nonlocal functionals are not suitable 
to be used as NAKEs because they are optimized for bulk systems 
where the electron density is nonzero everywhere. Conversely, the 
subsystem densities in sDFT feature at least one non-periodic di-
mension where they decay to zero.

Recently, we have developed a new generation of nonlocal 
kinetic energy functionals [46,12] and further adopted them as 
NAKEs [15] considerably improving the accuracy of sDFT in terms 
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of both energy and electron density. However, the original im-
plementation [15] is computationally very expensive compared to 
typical GGA NAKEs. In eQE 2.0, we implement a completely new 
scheme to evaluate nonlocal NAKEs that brings down the compu-
tational cost to almost GGA-level without sacrificing accuracy.

The remainder of this paper is organized as follows. A brief re-
view of sDFT and the previous version of eQE is given in section 2. 
Details of the implementation of the new functionals and bench-
mark calculations are discussed in section 3. Finally, in section 4
we summarize this work and conclude with several potential fu-
ture developments aimed to further increase the range of applica-
bility of sDFT.

2. Brief review of sDFT and eQE

In sDFT, the system of interest is split into interacting subsys-
tems of smaller size. Accordingly, the total electron density, n(r), is 
partitioned into subsystem contributions:

n(r) =
Ns∑
I

nI (r), (1)

where Ns is the total number of subsystems and nI (r) is the 
electron density of the subsystem I . In this way, the total en-
ergy functional of the system, EsDFT[{nI }], contains additive and 
nonadditive contributions encoding intra- and inter-subsystem in-
teractions. Namely,

EsDFT[{nI }] =
Ns∑
I

E K S [nI , v I
ext] + T nadd

s [{nI }] + Enadd
xc [{nI }]

+ Enadd
Coul [{nI }, {v I

ext}] (2)

where v I
ext is the external potential associated with subsystem 

I . The energy functional for each subsystem, E K S [nI , v I
ext], is the 

same as the energy functional of typical KS-DFT with v I
ext as ex-

ternal potential and nI as electron density. T nadd
s , Enadd

xc , and Enadd
Coul

are the NAKE and NAXC energy functionals, and the nonadditive 
Coulomb energy, respectively. All these nonadditive energy func-
tionals share the same definition:

F nadd[{nI }] = F [n] −
Ns∑
I

F [nI ]. (3)

Among them only Enadd
Coul can be expressed exactly, the others need 

to be approximated.
Variational minimization of EsDFT with respect to variations of 

the electron density of each subsystem leads to the following cou-
pled KS-like equations,[
−1

2
∇2 + v I

KS(r) + v I
emb(r)

]
φ I

i (r) = ε I
i φ

I
i (r), (4)

where v I
KS, v I

emb, φ I
i are the KS–potential of the isolated subsys-

tem, the embedding potential containing the functional derivatives 
of the nonadditive energy terms with respect to nI , and the or-
bitals of subsystem I , respectively. The embedding potential can 
be written as follows:

υ I
emb(r) =

Ns∑
J �=I

[ˆ
n J (r′)
|r − r′|dr′ + v J

ext(r)
]

+ δT nad
s [{nI }]
δnI (r)

+ δEnad
xc [{nI }]
δnI (r)

. (5)

The original version of eQE, implemented sDFT in the following 
way:
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1. The construction of subsystem Hamiltonians and their diago-
nalizations are performed independently for each subsystem 
in parallel (all subsystems at the same time) and in a reduced 
subsystem-centered simulation cell.

2. Subsystems can be assigned a custom number of processors to 
optimize load balance.

3. The parallelization scheme is hierarchical designed to reduce 
inter-node communication.

4. An additional global DIIS layer [26,47] to reduce the number 
of SCF cycles.

By adopting these steps, eQE achieved high parallel efficiency 
as showcased in several application works [30,32–34]. We need 
to stress that the computational efficiency and accuracy of eQE is 
system dependent. In general, the larger the number of subsystems 
and the smaller their size, the better eQE performs compared to 
KS-DFT codes.

3. New features and upgrades in eQE 2.0

In this section, We discuss the main features and updates of 
eQE since its original release in 2017 [26].

3.1. Nonlocal NAKEs

Recently, we developed fully nonlocal sDFT [15], which consid-
erably improves on the accuracy of semilocal sDFT. However, in 
the original implementation, the computational cost was orders of 
magnitude larger than semilocal NAKEs. In this work, the issue was 
resolved by presenting a new implementation of nonlocal NAKE 
which achieves the same accuracy in the results at essentially the 
cost of semilocal functionals.

The typical form of a nonlocal kinetic energy functional is:

Ts[n] = T T F [n] + T vW [n]︸ ︷︷ ︸
T T V [n]

+T N L[n] (6)

where, T T F [n], T vW [n], and T N L[n] are the Thomas-Fermi (TF) 
[48,49] and von Weizsäcker (vW) [50] functionals, and lastly the 
nonlocal part of the functional, respectively. The nonlocal part is in 
practice a two-point functional defined by a double integration of 
the electron density at two different points in space. The interac-
tion between two points is described by the so-called kernel, ω:

T N L[n] =
¨

nα(r)ω[n](r, r′)nβ(r′)drdr′ (7)

where α and β are positive numbers. The corresponding potential 
is obtained by functional derivative with respect to the density:

v Ts (r) = δT T V [n]
δn(r)

+ δT N L[n]
δn(r)

= v T V (r) + v N L(r). (8)

As discussed in our previous work [15], direct implementation of 
this formalism for calculating the kinetic potential leads to nu-
merical instabilities for both terms in the region of low electron 
density. In this region, the von Weizsäcker potential is inaccurate 
due to its dependence on the Laplacian of the electron density 
which is noisy for low density. The nonlocal part shares a similar 
issue. In eQE 2.0, we resolve these issues as follows.

For the T T V [n] = T T F [n] + T vW [n] term, the corresponding GGA 
formalism reads,

T T V [n] =
ˆ

τT V (r)dr =
ˆ

τT F (r)F T V [s](r)dr, (9)

where s is the dimensionless reduced density gradient, s =
1
2 1/3

|∇n(r)|
3/4 , the enhancement factor F T V (s) = 1 + 5 s2, and 
2(3π ) n (r) 3

3

τT F (r) = 3
10 (3π2)

2
3 n

5
3 (r). To eliminate the numerical inaccuracies 

arising at large s, we developed a numerically stable enhancement 
factor

F ST V (s) = 1.0 + 5

3

(
s2

1.0 + as2

)
, (10)

which is used in place of the original F T V [n], with a = 0.01.
We choose the LMGP family of functionals [15] as the nonlocal 

kinetic energy functional in eQE 2.0. LMGP’s potential term, v N L(r), 
can be written as follows:

v N L(r) = n−1/6(r)F−1
[

ñ5/6(q)ω[n(r)](q)

]
(r), (11)

where ñ5/6(q) =F
[
n5/6(r)

]
(q), ω[n(r)](q) is the nonlocal kernel ex-

pressed in reciprocal space, F and F−1 represent forward and 
inverse Fourier transforms, respectively. There are two important 
details to note:

1. the nonlocal kinetic potential has a n−1/6(r) factor which can 
lead to numerical noise in the low electron density regions.

2. The kernel of LMGP is density-dependent and of spherical 
symmetry, e.g., ω[n](r, r′) = ω[n(r)](|r − r′|).

To eliminate issues related to point (1) above, a density weighted 
mix of GGA and nonlocal potentials was implemented [15]. 
Namely,

v Ts [n](r) = (v N L[n](r) + v ST V [n](r)) W [n](r)

+ vGG A[n](r)(1 − W [n](r)) (12)

where W [n](r) = n(r)
nmax

, nmax is the maximum value of electron den-
sity in the system and vGG A is the potential of a well-established 
GGA kinetic energy functional (we use revAPBEK [51]). The kinetic 
energy can be obtained by line integration [52,15]:

Ts[n] =
ˆ

dr n(r)

1ˆ

0

dt v Ts [nt] (r), (13)

where nt(r) = tn(r). This required using a set of 40 or more t
points to obtain the converged results and with that 40 or more 
kinetic potentials {v Ts [nt](r)} needed to be evaluated.

To reduce the computational cost and still maintain numerical 
stability and accuracy, eQE 2.0 features a kinetic energy density 
mix where the total KEDF can be approximated as:

Ts[n] =
ˆ

τ [n](r)dr

=
ˆ

W [n](r)
[
τN L[n](r) + τST V [n](r)

]

+
(

1 − W [n](r)
)
τGG A[n](r)dr

(14)

where τ [n], τS T V [n], τGG A[n], τN L[n] are the kinetic energy density 
for total KEDF, T S T V [n] and TGG A[n] (revAPBEk [51]), respectively. 
The corresponding kinetic potential is

v Ts [n](r) = δTs[n]
δn(r)

= ∂W [n]
∂n(r)

[
τN L[n](r) + τST V [n](r) − τGG A[n](r)

]

+ W [n](r)
[

v N L[n](r) + v ST V [n](r) − vGG A[n](r)
]

+ vGG A[n](r).
(15)
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Fig. 1. Interaction energy deviations against the corresponding KS-DFT results for the S22-5 test set obtained by eQE with the following NAKEs: revAPBEK (GGA), LMGPAa

(original, nonlocal), and LMGPAb (this work, nonlocal). LMGPA is the LMGP functional with “arithmetically symmetrized” kernel as explained in [46]. PBE XC functional is 
adopted in all calculations. The indices on the x-axis correspond to complexes listed in Table S1 of the Supporting Information from Ref. [15].
where ∂W [n]
∂n(r) = 1

nmax
, vGG A[n](r) = ∂τGG A [n]

∂n(r) −∇ · ∂τGG A [n]
∂∇n(r) , v S T V [n](r)

= ∂τST V [n]
∂n(r) − ∇ · ∂τST V [n]

∂∇n(r)
In practice, the above equations for both KEDF Eq. (14) and ki-

netic potential Eq. (15) can be further separated into three terms. 
Namely,

Ts[n] = E ST V [n] + EGG A[n] + E N L[n], (16)

v Ts [n](r) = V ST V [n](r) + V GG A[n](r) + V N L[n](r) (17)

and each part can be evaluated in the following way:

1. STV term

V ST V [n](r) = W [n](r)v ST V [n](r) + τST V [n](r)

nmax
, (18)

E ST V [n] =
ˆ

W [n](r)τST V [n](r)dr. (19)

2. GGA term

V GG A[n](r) = [1 − W [n](r)] vGG A[n](r) − τGG A[n](r)

nmax
, (20)

EGG A[n] =
ˆ

[1 − W [n](r)] τGG A[n](r)dr. (21)

3. NL term

V N L[n](r) = W [n](r)v N L[n](r) + τN L[n](r)

nmax
(22)

where the nonlocal kinetic density τN L needs to be approxi-
mated because the functional integration procedure in Eq. (13)
is too expensive. From Eq. (11) notice that v N L[n] ∼ n2/3, 
with W [n] ∝ n, τN L can be approximated as τN L[n](r) �
3
8 n(r)v N L[n](r). Thus, the nonlocal kinetic energy can be ap-
proximated as:

E N L[n] =
ˆ

τN L[n](r)W [n](r)dr. (23)

In this way, each time the kinetic energy/potential is evaluated, 
only two GGA KEDFs and one fully nonlocal term need to be cal-
culated, dramatically reducing the computational cost compared to 
the original eQE implementation.

The ability of nonlocal sDFT to predict interaction energies and 
electron densities for the S22-5 test set (noncovalently interacting 
complexes at equilibrium and displaced geometries [53]) has been 
4

demonstrated in our previous work [15]. To quantify the accuracy 
of the new implementation, we select the same test set with the 
same calculation settings as before. The interaction energy devia-
tions between sDFT with different NAKEs, such as revAPBEK and 
LMGPA (i.e., LMGP with arithmetically symmetrized kernel [46]
which we implemented in the original and new version of eQE) 
against the corresponding KS-DFT reference are shown in Fig. 1.

The reason why we compare sDFT with KS-DFT is that in KS-
DFT the total noninteracting kinetic energy is exact, while in sDFT 
the nonadditive part of the noninteracting kinetic energy is ap-
proximate. If the two methods deliver similar results for a given 
choice of exchange-correlation (we use PBE for this comparison) 
then it means that the approximate nonadditive functional used 
in sDFT is accurate. Later we will also compare against CCSD(T) 
benchmark values. As expected, the LMGPA nonlocal NAKE consid-
erably improves on the results of semilocal sDFT, especially when 
the dimer distances are shorter than the equilibrium distance (i.e., 
for the S22-5(0.9) subset). Most importantly, the results from the 
new version of LMGPA are almost on top of the original version, 
showing that the new implementation maintains an excellent level 
of accuracy but is computationally much cheaper. A similar result 
is obtained when a different XC functional is used (such as a non-
local XC functional) [15].

Hereafter, the new implementation of LMGPA (noted as LMGPAb

in the figure captions) is simply referred to as LMGPA.

3.2. Nonlocal NAXCs

It is well known that semilocal XC functionals struggle to de-
scribe long-range correlation effects such as dispersion interac-
tions. However, dispersion interactions play a critically important 
role in a wide variety of materials, especially those composed of 
weakly interacting subsystems. Thus, it is necessary to adopt NAXC 
functionals that go beyond GGA to systematically improve the per-
formance of sDFT.

Many nonlocal XC functionals have been proposed [54–58]. 
Among them, rVV10 [57] stands out for its accuracy across not 
only non-covalently bound complexes but also covalent, ionic, and 
metallic solids. Most importantly, the computational cost can re-
main low [59]. Thus, we adapted the existing rVV10 implemen-
tation of Quantum ESPRESSO [57] for eQE, where an evaluation 
of the functional and corresponding potential in the supersystem 
(physical cell) and in the subsystem-centered cells are needed. The 
resulting fully nonlocal sDFT compares favorably against CCSD(T) 
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Fig. 2. Wall times when simulating supercells containing 32, 64, 128, and 256 CO2

molecules. The corresponding numbers of MPI tasks are 64, 128, 256, 512. Full lines 
are eQE simulations with different NAKE functionals. Doted lines are KS-DFT (QE 
version 6.6) simulations for the same systems and same cutoff for the plane waves 
(i.e., 40 Ry for the wavefunctions and 400 Ry for the electron density).

benchmark values for the interaction energies of the S22-5 set as 
can be seen in Fig. 3.

To quantify the computational efficiency and scaling, we simu-
lated supercells of 32, 64, 128, and 256 CO2 molecules with the 
corresponding number of processors of 64, 128, 256, and 512. 
These calculations are performed in both KS-DFT (version 6.6 of 
Quantum ESPRESSO) and eQE 2.0 with both PBE and rVV10 XC 
functionals. Considering that the number of SCF iterations for dif-
ferent systems is not exactly the same, we report here the wall 
time for the first 20 iteration steps. As shown in Fig. 2, eQE scales 
ideally when system size and resources are proportionally scaled. 
This is in contrast with version 6.6 of Quantum ESPRESSO which, 
as expected, scales polynomially with system size. Most impor-
tantly, The computational cost of nonlocal sDFT traces almost per-
fectly the scaling of semilocal sDFT. These results indicate that the 
implementation of nonlocal functionals for both NAKEs and NAXC 
are nearly ideal in eQE 2.0.

3.3. Deorbitalized meta GGA functionals

A key challenge in DFT is the development of accurate and 
computationally affordable functionals for the XC energy. The so-
called Perdew-Schmidt Jacob’s ladder [60,61] provides a classifica-
tion of the level of complication that goes in the formulation of 
the functional. The ladder leads to the “heaven of chemical accu-
racy”, starting from the local density approximation (LDA; depen-
dence on n(r), only), generalized gradient approximations (GGA; 
dependent on n(r) and |∇n(r)|), and meta-generalized gradient ap-
proximations (mGGA; dependent on n(r), |∇n(r)| as well as the 
noninteracting kinetic energy density, τ (r), and possibly the den-
sity laplacian, ∇2n(r), and higher order derivatives). Generally, and 
particularly in this work, the functional dependencies of a mGGA 
functional can be expressed as follows

Exc := Exc

[
ξ [n,∇n], τ

]
, (24)

where the ξ function represents the GGA component of the mGGA 
functional.

Among all functionals, GGAs dominate materials modeling 
mainly due to their computational efficiency and generally reli-
able description of various types of materials [62]. However, as 
mentioned, GGAs are severely limited because their description of 
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long/intermediate-range electron-electron correlation, such as van 
der Waals interaction, is not satisfactory. Additionally, the presence 
of self-interaction [63] is detrimental for spin-polarized systems 
and fractional-spin systems (static correlation) [64,65]. Among the 
various mGGA XC functionals, the strongly constrained and appro-
priately normed (SCAN) satisfies a record 17 exact conditions and 
can considerably improve GGAs for various systems (e.g., covalent, 
metallic, and even weak bonds) [66].

Unfortunately, because τ (r) is typically defined in terms of the 
KS-DFT occupied orbitals {φi},

τ (r) = 1

2

Ne∑
i=1

|∇φi(r)|2 , (25)

the mGGA XC potential,

vxc(r) =
δExc

[
ξ [n,∇n], τ

]
δn(r),

(26)

cannot be directly evaluated by means of functional derivative un-
less expensive optimized effective potential (OEP) methods are em-
ployed [67–69].

To address this complication, a few workarounds have been 
proposed: (1) completely avoid the evaluation of the τ -dependent 
mGGA potential. The mGGA functional is just used for non-self-
consistent evaluation of the energy using the n and τ obtained 
from a non-τ -dependent potential [70,71]. However, this approach 
is not self-consistent, i.e., the potential is not the derivative of the 
energy functional which can cause issues, for example, of energy 
conservation during an ab-initio molecular dynamics. (2) Evalu-
ate the potential in the generalized Kohn-Sham (gKS) scheme. gKS 
only involves functional derivatives with respect to the KS or-
bitals [60,72] (e.g., δExc[{φi}]/δφi) yielding an orbital-dependent 
XC potential. The computational cost of the gKS scheme is much 
cheaper than OEP, thus it is currently a widely-used approach for 
τ -dependent mGGAs.

We note that sDFT cannot directly take advantage of the gKS 
scheme because only the KS orbitals of the subsystems are avail-
able. The KS orbitals of the global supersystem are never com-
puted. This issue persists not only for mGGAs, but also for the 
Hartree-Fock (HF) exchange potential [73,74].

In eQE 2.0, we decided to approach the problem from a differ-
ent angle. Inspired by recent advances in the OF-DFT community, 
the kinetic energy density, τ , can be approximated directly with a 
pure density functional [75,76]. This strategy goes by the name of 
“deorbitalization” converting the explicit orbital-dependent mGGA 
XC energy functional to a pure density functional. As a result, 
the corresponding deorbitalized XC potential can be evaluated via
Eq. (26) [76,77].

With deorbitalization, the challenge is to approximate the ki-
netic energy density, not the potential or the energy. Thus, func-
tionals that work well in OF-DFT and as nonadditive functionals 
in sDFT may in the end not work well for approximating the 
τ needed by mGGA XC functionals. GGAs might be considered, 
given their easy and cheap evaluation. However, many researchers 
[78–80] have shown that Laplacian-level functionals (i.e., those de-
pending on ∇2n) are the most suitable functionals for this task.

Laplacian-level KEDF approximations can be written as follows

Ts[n,∇n,∇2n] =
ˆ

τ [n,∇n,∇2n](r)dr. (27)

Thus, the deorbitalized mGGA functionals can be written as,

Exc =
ˆ

εxc

[
ξ [n,∇n], τ [n,∇n,∇2n]

]
(r)dr

=
ˆ

εxc[n,∇n,∇2n](r)dr. (28)
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Fig. 3. Interaction energy deviations against CCSD(T) benchmark values for the S22-5 test set. sDFT calculations carried out with eQE with the following NAKEs: revAPBEK 
(GGA), LMGPAa (original, nonlocal), and LMGPAb (this work, nonlocal). LMGPA is the LMGP functional with “arithmetically symmetrized” kernel as explained in [46]. rVV10 
XC functional is adopted in all calculations. The indices on the x-axis correspond to complexes listed in Table S1 of the Supporting Information from Ref. [15].
In this way, the XC functional is an explicit density functional 
and the corresponding XC potential can be evaluated by Eq. (26). 
Namely,

vxc = δExc

δn
= ∂εxc

∂n
− ∇ · ( ∂εxc

∂∇n
) + ∇2(

∂εxc

∂∇2n
). (29)

where we are omitting hereafter specific variable dependence of 
the density and other functions/functionals. Considering τ as a 
functional of n, ∇n, and ∇2n as shown in Eq. (27)–(28), the XC 
energy density partial derivatives with respect to n, ∇n, and ∇2n
can be expressed as follows

∂εxc

∂n
= ∂εxc

∂ξ

∂ξ

∂n
+ ∂εxc

∂τ

∂τ

∂n
(30)

∂εxc

∂∇n
= ∂εxc

∂ξ

∂ξ

∂∇n
+ ∂εxc

∂τ

∂τ

∂∇n
(31)

∂εxc

∂∇2n
= ∂εxc

∂τ

∂τ

∂∇2n
. (32)

Here, the terms in red color are independent of the choice of τ . 
(For interpretation of the colors in the text, the reader is referred 
to the web version of this article.) Thus, these operations are col-
lected in a single subroutine for each mGGA XC functional.

To better show the formalisms of mGGA functionals related to 
τ parts implemented in eQE, we first define the following reduced 
gradient and reduced density Laplacian:

1. Reduced gradient

s = |∇n|
2(3π2)1/3n4/3

(33)

p = s2 = C p
|∇n|2
n8/3

(34)

2. Reduced density Laplacian

q = ∇2n

4(3π2)2/3n5/3
= C p

∇2n

n5/3
(35)

where C p = 1
4(3π2)2/3 .

In general, Laplacian-level kinetic energy density τ can be ex-
pressed as:

τ = τTF Ft[p,q], (36)
6

where τTF = 3
10 (3π2)2/3n5/3.

Using of Eq. (36), the kinetic energy density partial derivatives 
with respect to n, ∇n, and ∇2n can be further written as follows

∂τ

∂n
=

(
∂ Ft

∂ p

∂ p

∂n
+ ∂ Ft

∂q

∂q

∂n

)
τTF + ∂τT F

∂n
Ft (37)

∂τ

∂∇n
= ∂ Ft

∂ p

∂ p

∂∇n
τTF (38)

∂τ

∂∇2n
= ∂ Ft

∂q

∂q

∂∇2n
τTF, (39)

where ∂ p
∂n = − 8

3 p/n, ∂q
∂n = − 5

3 q/n, ∂ p
∂∇n /∇n = 2C p

n8/3 , ∂q
∂∇2n

= C p

n5/3 , and 
∂τT F
∂n = 5

3 CTFn2/3. The above equations (37)–(39) are independent of 
the particular mGGA XC functional used. The terms in blue color 
are determined only by the choice of KEDF, and the other terms are 
independent of the choice of both XC and KEDF. Thus, the terms in 
blue are evaluated in a separate, independent subroutine which is 
called by the subroutine that combines all terms together.

eQE 2.0 implements one of the best performing mGGA func-
tionals, the SCAN functional [66] deorbitalized utilizing Laplacian-
level KEDFs (PC [75], PCopt [76], TFLopt [76], GEA2L, L04 [78]).

3.4. A note on numerical stability

Previous works [76,77] show that the use of the Laplacian op-
erator can introduce noise in the results, especially when a plane-
wave basis is adopted. To address this challenge we implemented 
a smooth Laplacian, L̂s , inspired by convolutions typically used for 
smoothing images. Consider x(r) as any physical quantity defined 
in real space (such as electron density n(r) and potential v(r)), 
then, the smooth Laplacian operator, L̂s , operates on x(r) as,

L̂sx(r) = −F−1
[
F

[
Ŝ [x(r)] + Ŝ

[
x(r) − Ŝ[x(r)]

]]
|g|2e−σ |g|2] .

(40)

Where Ŝ is defined as,

Ŝx(r) = F−1
[
F[x(r)]e−σ |g|2] , (41)

g is the reciprocal space vector, and σ is a parameter. Based on 
our tests, σ = 0.02 is a good choice to maintain numerical stability 
without over smoothing.
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Fig. 4. Mean absolute deviations (MADs) of interaction energies computed by several realizations of the SCAN functional: original (SCAN), deorbitalized SCAN with L04 KEDF 
for τ (SCAN-L04), and SCAN–L04 in sDFT coupled with nonlocal NAKE (LMGPA@SCAN-L04) in comparison to CCSD(T) for the S22-5 test set. The SCAN results are taken from 
Ref. 66. All values are given in kcal/mol. H-Bond, Dispersion and Mixed stand for hydrogen-bonded, dispersion-bonded and complexes bonded by a mix of hydrogen bonds 
and dispersion interactions, respectively.
Table 1
Summary of the Mean absolute deviations (MADs) of interaction 
energies computed with different approaches against CCSD(T) re-
sults. All values are given in kcal/mol. H-bonded, Dispersion and 
Mixed stand for hydrogen-bonded, dispersion-bonded and complexes 
bonded by a mix of hydrogen bonds and dispersion interactions, re-
spectively.

Methods H-bonded Dispersion Mixed Total

SCAN 0.56 1.19 0.64 0.82
SCAN-L04 3.04 0.79 0.84 1.52
LMGPA@SCAN-L04 2.41 1.25 0.73 1.46

To verify the SCAN functional implemented in eQE, we imple-
mented the subroutines we use in eQE for evaluation of SCAN 
functional in Quantum ESPRESSO 6.6. Our implementation of SCAN 
in Quantum ESPRESSO (using the gKS approach) reproduced ex-
actly the same results as the latest version Quantum ESPRESSO 
with Libxc [81,82]. This indicates that our implementation is cor-
rect. As previous work shows [78], the L04 mGGA KEDF outper-
forms other mGGA KEDFs when employed to approximate τ for 
mGGA XC functionals. Thus, here, we select L04 in all calculations. 
We note, however, that the PCopt KEDF has also been reported to 
be suitable for this task [77].

We again select the S22-5 test set with the same settings 
as before [15], except for the plane wave cutoffs which is in-
creased to 500 Ry for the density and is kept to 70 Ry for the 
wavefunctions. As shown in Fig. 4, we present the mean absolute 
deviations (MADs) of interaction energies obtained with differ-
ent approaches in comparison to the benchmark CCSD(T) energies. 
These approaches include the SCAN functional implemented in the 
gKS scheme (SCAN), the SCAN-L04 functional (SCAN-L04), and the 
SCAN-L04 functional used in sDFT with the nonlocal LMGPA as 
NAKE (LMGPA@SCAN-L04). It is clear that SCAN-L04 delivers good 
interaction energies with MADs well below 5 kcal/mol. SCAN-L04 
does not deteriorate the good performance of SCAN, except for 
the hydrogen bonded systems. Moreover, sDFT simulations with 
LMGPA@SCAN-L04 combination can deliver no worse results (even 
better for hydrogen bonded and Mixed bonded system) in compar-
ison to SCAN-L04 results.

To further quantify the performance of SCAN-L04, we sum-
marize the MADs of the interaction energies calculated with 
SCAN, SCAN-L04, and LMGPA@SCAN-L04 against CCSD(T) results 
in Table 1. It is clear that the performances of these three ap-
proaches are similar, since the total MAD for SCAN, SCAN-L04, 
7

and LMGPA@SCAN-L04 are 0.82, 1.52, 1.46 kcal/mol, respectively. 
For hydrogen-bonded systems, SCAN (0.56 kcal/mol) outperforms 
LMGPA@SCAN-L04 (2.41 kcal/mol) and SCAN-L04 (3.04 kcal/mol).

It is clear that deorbitalized mGGA functionals are competitive 
against the best pure functionals currently on the market. We envi-
sion further improvement for the deorbitalization strategy tackling 
the following weaknesses:

1. Deorbitalized mGGAs require larger plane-wave cutoffs to 
achieve converged results compared to typical GGA function-
als.

2. The use of Laplacian-level KEDF for evaluating τ with plane-
wave basis sets is numerically challenging. This can lead to an 
increase in the number of SCF iterations.

3. Currently available approximations to τ [n](r) are still fairly 
crude.

4. Conclusions and future directions

This work releases version 2 of embedded Quantum ESPRESSO 
– a code for running density embedding simulations of molecules 
and condensed-phase systems. Since its first release, eQE has been 
successfully employed for many large-scale simulations for con-
densed matter physics and chemistry. The new release allows the 
user to employ nonlocal functionals both for the kinetic energy 
(needed for density embedding) and exchange-correlation. Specifi-
cally, the new functionals include nonlocal nonadditive kinetic en-
ergy such as LMGPA, and nonlocal XC functionals such as rVV10. 
eQE version 2 also includes deorbitalized meta GGA XC function-
als (i.e., where the kinetic energy density, τ , is approximated by a 
pure density functional). Preliminary benchmark tests for the new 
nonlocal functionals indicate that they considerably improve on 
the performance of semilocal functionals in KS-DFT and subsys-
tem DFT (embedding) calculations without increasing the compu-
tational cost significantly and, most importantly, maintaining eQE’s 
strong scalability with systems size.

Following this release, we will turn to further improve eQE’s 
performance implementing new features which may include (but 
not limited to) development of new nonadditive XC functionals, es-
pecially the latest SCAN variants (such as: r2SCAN [83,84], r2SCAN+ 
[85,86], SCAN+rVV10 [87]). We will also continue to develop more 
accurate KEDFs for both nonadditive functionals for embedding 
and for approximating the kinetic energy density used in deor-
bitalized meta GGA functionals.
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