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Imposing correct jellium response is key to predict the density response by orbital-free DFT
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Orbital-free density functional theory constitutes a computationally highly effective tool for modeling elec-
tronic structures of systems ranging from room-temperature materials to warm dense matter. Its accuracy
critically depends on the employed kinetic energy (KE) density functional, which has to be supplied as an
external input. In this work we consider several nonlocal and Laplacian-level KE functionals and use an external
harmonic perturbation to compute the static density response at T = 0 K in the linear and beyond-linear response
regimes. We test for the satisfaction of exact conditions in the limit of uniform densities and for how approximate
KE functionals reproduce the density response of realistic materials (e.g., Al and Si) against the Kohn-Sham DFT
reference, which employs the exact KE. The results illustrate that several functionals violate exact conditions in
the uniform electron gas (UEG) limit. We find a strong correlation between the accuracy of the KE functionals
in the UEG limit and in the strongly inhomogeneous case. This empirically demonstrates the importance of
imposing the limit of UEG response for uniform densities and validates the use of the Lindhard function in the
formulation of kernels for nonlocal functionals. This conclusion is substantiated by additional calculations for
bulk aluminum (Al) with a face-centered cubic (fcc) lattice and silicon (Si) with an fcc lattice, body-centered
cubic (bcc) lattice, and semiconducting crystal diamond state. The analysis of fcc Al, and fcc as well as bcc
Si data follows closely the conclusions drawn for the UEG, allowing us to extend our conclusions to realistic
systems that are subject to density inhomogeneities induced by ions.

DOI: 10.1103/PhysRevB.108.235168

I. INTRODUCTION

First-principles methods based on the electronic density
are often used for simulations of electronic structures in
physics and chemistry. Usually, there is a punishing correla-
tion between the increase in the accuracy of a method and
its computational cost. Indeed, there is a computational bot-
tleneck for methods such as Kohn-Sham density functional
theory (KS-DFT) or, more accurately, generalized KS-DFT
with hybrid exchange-correlation (XC) functionals, which
strongly hinders the simulation of large systems (e.g., with the
number of particles of the order of N ≈ 104 and more). The
simulation of large systems is considered to be important for
the adequate description of processes involving large numbers
of particles such as phase transitions [1], nucleation [2], freez-
ing or melting [3,4], collective ion oscillation (normal) modes
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[5–7], and to calculate transport properties such as diffusion
and viscosity [8–10]. These properties are often accessed
by combining molecular dynamics (MD) simulations of ions
with the electron forces computed using a density functional
theory–based method.

Orbital-free density functional theory (OF-DFT) [11] is
one of the DFT approaches being actively developed for the
simulation of large systems because of its generally linearly
scaling computational cost with respect to the number of
particles. OF-DFT has been employed successfully for the
description of materials [11], melted metals [12], and even
nanoparticles [13]. Additionally, the computational cost of
OF-DFT is not sensitive to the variation in temperature since
it does not use orbitals. This is an important computational
advantage of OF-DFT when it comes to the simulation of phe-
nomena at high temperatures [14], at which thermal KS-DFT
simulations require a large number of orbitals to correctly
capture thermal excitations. Furthermore, being computation-
ally inexpensive, OF-DFT can be used as an intermediate step
to accelerate KS-DFT-based MD simulations by optimizing
an initial ionic configuration [15]. Moreover, the OF-DFT
approach is one of the main tools for the simulation of near-
mesoscopic-scale dynamics taking into account the quantum
nonlocality in plasmonics [16,17], quantum plasmas [18–21]
as well as plasmonics in nanomaterials [22–24]. Recent
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advances have extended the applicability of OF-DFT to dy-
namic structure factors [25] and optical properties of clusters
and nanostructures [26–28].

In contrast with KS-DFT, the noninteracting kinetic energy
(KE) functional in OF-DFT is not expressed as a pure func-
tional of the KS orbitals but it is instead expressed as a pure
functional of the electron density. The functional is known
to exist, but its analytical pure dependency on the electron
density is not known exactly and has to be approximated.
Therefore, the key problem is to design a KE functional, and
the corresponding noninteracting free energy at finite temper-
atures. Following early seminal works by, e.g., Thomas and
Fermi (TF) [29,30], Kohn and Sham [31], Perrot [32], and
Wang and Teter (WT) [33], it became a standard to design
KE functionals that reproduce the correct density response
function in the limit of the ideal uniform electron gas (UEG)
[34–38]. This connection to the archetypical free-electron
system delivers a certain level of universality, which, e.g.,
can lead to accurate results for bulk properties of metals and
semiconductors [13,39–43].

Using the UEG model, a commonly used relation (con-
straint) for the construction of a KE functional Ts[n] is based
on the Lindhard function χLin [19,31,44]:

−F

[
δ2Ts

δn(r)δn(r′)

∣∣∣∣
n=n0

]
= 1

χLin(η)
, (1)

where η = k/(2k0
F ) is a wave number in the units of the Fermi

wave number k0
F = (3π2n0)1/3 (with n0 being the mean elec-

tron density) and F[. . .] denotes the Fourier transformation
operator. For example, so-called semilocal KE functionals can
be build by using the long-wavelength expansion of Eq. (1) at
η < 1 [39].

The engineering of advanced KE functionals is ac-
companied by involved theoretical manipulations with the
constraint that the Lindhard function is reproduced if one
first takes the UEG limit n → n0 and then performs the
Fourier transform according to the relation (1). For exam-
ple, using a series expansion of χ−1

Lin (η) for η < 1, one
recovers a constant term (associated with the Thomas-
Fermi functional) and corrections which come with powers
of η = kn0/2kF n0 and η2 = k2n0/4k2

F n0 whose real-space
counterparts are s(r) = |∇n(r)|/[2kF (r)n(r)] and q(r) =
|∇2n(r)|/[4k2

F (r)n(r)] [where kF (r) = (3π2n(r)1/3) is the lo-
cal Fermi wave number]. Another example of the operations
connecting a real-space density inhomogeneity with the den-
sity perturbation wave number in χ−1

Lin (η) is the functional
integration using the local density to map system properties
locally on the UEG at the corresponding density [42,43].
In general, one can use Eq. (1) in combination with other
approaches for the construction of the KE functional. For
instance, Sarcinella et al. [45] used a screened Coulomb
potential kernel to generate a class of density functionals re-
ferred to as the Yukawa-generalized gradient approximation.
These schemes for the engineering of KE functionals based
on Eq. (1) can be symbolically expressed as

χLin(q; [n0]) ⇒ Ts[n(r)]. (2)

Being based on assumptions that can be theoretically jus-
tified to a certain degree, the KE functionals constructed on

top of the Lindhard function might not be traceable back
numerically to Eq. (1) in the limit of the UEG leading to an
inconsistency:

Ts[n(r)] �⇒ χLin(q; [n0]). (3)

Additionally, nonlocal KE functionals derived from Eq. (1)
will suffer from bias towards describing uniform densities
best. It is yet unclear whether these functionals are capable of
producing accurate density response for the UEG and realistic
materials in the linear and beyond-linear response regimes.

In this work, we test some of the open questions mentioned
above by implementing a direct perturbation approach. The
electronic system is harmonically perturbed allowing us to
compute the static density response function of UEG and
any bulk material using OF-DFT as well as KS-DFT. This
direct perturbation approach constitutes an effective tool to
check inconsistencies in the sense of Eq. (3) and generally the
quality of the density response in the linear and beyond-linear
regimes. We specifically focus on the case of fully degenerate
electrons with a temperature T � TF , where TF is the Fermi
temperature.

A particular focus of this work is on KE functionals de-
signed imposing Eq. (1). Since the Lindhard function-based
construction is not optimal for bound states and systems
with band gaps, other strategies such as utilizing the jellium-
with-gap model [46], constraints on the Pauli potential and
constraints on atom densities (e.g., Kato cusp condition) have
been used. These observations motivate us to employ the
method of the direct perturbation approach to compute the
static density (linear and beyond-linear) response function
for various KE functionals to inspect the severity of the bias
introduced by Eq. (1). We reiterate that, in addition to the
noninteracting kinetic energy (KE) functional, the XC func-
tional needs to be supplied as an input of any DFT simulation.
However, because we focus here on KE functionals, we pur-
posely do not test the variability of our results with respect to
different choices of XC functionals.

A particularly interesting problem to be analyzed using the
direct perturbation method is related to the applicability of the
UEG-based KE functional when the density perturbation is
beyond the linear response regime. Indeed, when the pertur-
bation is strong enough, linear density response theory (like
χLin) can be grossly inaccurate for the description of the den-
sity perturbation [47–50]. Here we show that one can analyze
the performance of the KE functionals by observing of the
response from approximate OF-DFT KE functionals against
KS-DFT results with increasing amplitude of the harmonic
perturbation.

We consider an array of KE functionals, for example
the nonlocal WT functional [33] and MGP functionals [40]
(the latter uses functional integration techniques to define
the kernel of the nonlocal term), the Laplacian-level, meta-
GGA PGSL functional [41], and LWT and LMGP functionals
created by introducing a local density dependence into the
kernels of MGP and WT, respectively [43]. The constraint (1)
was used for the construction of these functionals. By design,
the WT and LWT (and to an extent also MGP and LMGP)
should satisfy Eq. (1), in principle, for all wave numbers, and
PGSL should satisfy Eq. (1) at η � 0.5 (i.e., k � k0

F ).
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The application of the direct perturbation approach to real
materials is provided for several phases of bulk aluminum
(Al) and silicon (Si). We analyzed the density response of the
valence electrons to a weak external harmonic field at different
wave numbers. This allowed us to relate the performance of
the KE functionals in the UEG limit to the quality of the den-
sity response description for these realistic, inhomogeneous
materials.

Finally, taking into account the interest in the application of
OF-DFT for warm dense matter research [19–21,25,51–53],
we formulate recommendations for the application of these
functionals at such extreme densities and temperatures for
degenerate electrons.

The paper is organized as follows: In Sec. II, we provide a
brief theoretical background of the considered KE functionals
to emphasize the relevant physical aspects. We also introduce
the direct perturbation method. We provide the simulation
details in Sec. III. The results and discussions are presented
in Sec. IV where we present static (linear and beyond-linear)
response simulations for the UEG and bulk Al and Si. The pa-
per is concluded by summarizing main findings and providing
an outlook over potential future works.

II. THEORETICAL BACKGROUND

In this section, we first briefly introduce the nonlocal and
Laplacian-level KE functionals considered in this work. Then
we discuss how the constraint (1) is used in their construction.
Lastly, we introduce the harmonic perturbation approach.

A. Nonlocal and Laplacian-level kinetic-energy functionals

The application of the constraint (1) is clearly illustrated
by using the WT ansatz for the noninteracting KE density
functional,

TWT[n(r)] = TTF[n(r)] + TvW [n(r)]

+
∫∫

drdr′n(r)5/6K (r − r′; n0)n(r′)5/6, (4)

where TTF[n(r)] = ∫
drτTF[n(r)] is the ground state

Thomas-Fermi KE with the kinetic energy density
τTF[n(r)] = (3/10)(3π2)2/3n5/3(r) and TvW [n(r)] =∫

dr|∇n(r)|2/[8n(r)] is the von Weizsäcker (vW) gradient
correction, and the KE kernel K (r − r′; n0) is obtained in
Fourier space by using Eq. (1),

K̃ (k; n0) = [−χ−1
Lin (k) + χ−1

TF (k) + χ−1
vW(k)

]
18
25 n−1/3

0 . (5)

Here χ−1
TF (k) = −π2/(3π2n0)1/3 is the Thomas-Fermi

response function and χ−1
vW(k) = −k2/(4n0) is the vW contri-

bution (e.g., see Refs. [19,54]). The variational minimization
of the WT KE functional for the UEG under the constraint of
a constant particle number automatically reproduces χ−1

Lin (k)
for all wave numbers. Therefore, the WT KE functional is
described as nonlocal. We note that, in quantum plasma ap-
plications, the potential generated by the TvW [n(r)] term in
Eq. (5) is commonly referred to as the Bohm potential [18,19].

Other nonlocal KE functionals based on the Lindhard func-
tion and considered in this work are MGP [40], LMGP, and
LWT [43]. In contrast with the WT model for which the KE

potential δTWT/δn is computed using an ansatz (4) for the KE
functional, the MGP potential is calculated by functional inte-
gration [40]. The difference between MGP and LMGP is the
way how the Lindhard function is used. In the MGP, χ−1

Lin (k) is
computed using the mean density n0 of the valence electrons.
In the case of the LMGP, χ−1

Lin (k) is computed for each grid
point using the density value n0 → n(r) on this grid point.
Similarly, the LWT potential is computed using an n0 → n(r)
mapping locally for the WT KE kernel (4) [43]. Therefore,
being nonlocal functionals based on the Lindhard function
and with rather nontrivial mathematical manipulations, the
MGP, LMGP, and LWT functionals are perfect candidates to
showcase the utility of the direct perturbation approach for
computing the density response and for testing functionals
(i.e., in the limit of the UEG).

In addition to the aforementioned nonlocal KE function-
als, we consider three semilocal KE functionals. We use
a Laplacian-meta-GGA level KE functional, PGSL, devel-
oped by Constantin et al. [41] (with PGSL standing for
“Pauli-Gaussian second order and Laplacian”). The PGSL KE
functional used in this work has the following form:

TPGSL[n(r)] = TvW [n(r)] +
∫

drτTF[n(r)]F (s(r), q(r)),

(6)

where

FPGSL(s(r), q(r)) = exp[−μs2(r)] + βq2(r), (7)

with μ = 40/27 and β = 0.25.
The PGSL KE functional (10), by its design, should repro-

duce the Lindhard density response function of the UEG at
k < 2k0

F . In Ref. [41], it was demonstrated that the PGSL KE
functional provides accurate results for the bulk properties of
metals and semiconductors without using system-dependent
parameters.

The second semilocal KE functional that we use is PGS
(standing for “Pauli-Gaussian second order”) [41], which has
the same functional form as Eq. (9) but with the following
kernel:

FPGS(s(r), q(r)) = exp[−μs2(r)]. (8)

The PGS functional is designed to satisfy the second-order
gradient expansion following from the long-wavelength ex-
pansion of the inverse Lindhard function [19,32,37,55].

The third semilocal KE functional that we consider is the
generalized gradient approximation by Luo, Karasiev, and
Trickey (LKT) [56]:

TLKT[n(r)] =
∫

drτTF[n(r)]FLKT(s(r), q(r)), (9)

where

FLKT(s(r), q(r)) = 1

cosh(as(r))
+ 5

3
s2(r), (10)

with a = 1.3.
The LKT functional is designed to satisfy the positivity of

the Pauli functional and potential, and was tested successfully
on simple metals and semiconductors [56].
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B. Harmonic perturbations

The OF-DFT calculations of the electron-density distribu-
tion are performed by minimization of the total energy under
the constraint of a constant particle number. The correspond-
ing Lagrangian is given by

L[n] = Ts[n] + WH[n] + Wei[n] + Vxc[n]

+
∫

dr2A cos (k · r)n(r) − μc

(∫
drn(r) − N

)
,

(11)

where WH[n] is the classical Coulomb repulsion between
electrons in a mean-field (Hartree) approximation, Wei[n] =∫

vPP(r)n(r)dr is the potential energy due to the electron-ion
interaction (vPP is an ionic pseudopotential), Vxc[n] is the XC
energy, and μc is a constant defining the chemical potential
at a fixed number of electrons N in the simulation cell. Addi-
tionally, the Lagrangian (11) has a term corresponding to the
external harmonic perturbation with an amplitude A and wave
number k.

The latter leads to a deviation of the electron density from
its mean value,

δnA,k(r) = nA,k(r) − n0. (12)

For the UEG, in the linear response regime (i.e., for weak
perturbations), the change in the density δnA,k(r) can be com-
puted using the static electronic density response function
χ (k),

δnA,k(r) = χ (k)2A cos (k · r). (13)

Therefore, the calculation of the electron-density pertur-
bation δnA,k(r) due to an external harmonic field and the
inversion of Eq. (13) allow one to compute the static density
response function χ (k). We note that this method can be
generalized to inhomogeneous systems and to the dynamic
density response function [57–59].

Next, if we neglect the XC energy and set Vxc = 0 in
Eq. (11), the OF-DFT calculation of the harmonically per-
turbed system delivers the screened noninteracting density
response function, with the screening effect being due to the
presence of the Hartree term in the Lagrangian (11). For this
case, the exact analytical solution in thermodynamic limit
reads [36]

χRPA(k) =
[

1 − χs(k)
4π

k2

]−1

χs(k), (14)

where χs is the static Kohn-Sham response which reduces to
χLind for the UEG and the inverse reduces to a simple “one-
over” operation. The resulting response in Eq. (14) is referred
to as random-phase approximation (RPA).

In this way, using the OF-DFT results for the density re-
sponse function of the UEG in the RPA and Eq. (14), we can
directly test whether a given KE functional is able to repro-
duce the Lindhard function at the relevant wave numbers.

Increasing the amplitude of the external perturbation A
eventually leads to a density perturbation outside of the linear
response domain. We recall that the KS-DFT method delivers
an exact result for a given choice of XC functional (including
omitting it completely to obtain the so-called RPA approxi-
mation). Therefore, by performing a comparative analysis of

the OF-DFT and KS-DFT results for the density perturbation
beyond the linear response regime, we can rigorously assess
to which degree the quality of the KE functionals built on the
basis of the linear response function of the UEG deteriorates.
In general, OF-DFT is used to describe inhomogeneous sys-
tems. Therefore, we also provide examples for its application
to a system that contains ions (bulk Al and Si). For context,
in prior works, the direct perturbation approach has been used
to compute the static density response function and XC kernel
of warm dense matter using quantum Monte Carlo [47,50] and
thermal KS-DFT methods [49,57,60–62]. Here, we extend its
use to probe the quality of KE density functionals in OF-DFT.

We note that the response functions considered so far are
frequency independent; that is, they describe the density re-
sponse due to an adiabatic perturbation whereby the electrons
have an infinite time to adjust to the applied perturbation. The
ability of the KE functional approximations to produce quality
adiabatic responses is key to quality time-dependent OF-DFT
simulations [22,24,28]. In Ref. [28] Jiang et al. argue that,
while nonlocal functionals (specifically LMGP) provide good
approximations to the adiabatic response, semilocal, GGA
functionals also deliver an accurate adiabatic response. The
test systems in that work were comprised of clusters of various
sizes. By considering systems with periodicity, this work aims
at providing valuable information as to whether (semi)local
KE functionals live up to the expectations set for in Ref. [28].

III. CALCULATION PARAMETERS

The OF-DFT simulations were performed using the DFTpy
code that is based on a plane-wave expansion of the electron
density [63]. The KS-DFT calculations were performed using
the ABINIT package [64–69]. We simulated a free electron gas
in the ground state at a characteristic metallic density n0 =
2 × 1023 cm−3 with periodic boundary conditions.

For the calculation of the linear response function, the
amplitude of the perturbation is set to A = 0.01 (in Hartree),
which creates a weak density perturbation described accu-
rately by linear response theory. To test the KE functionals
beyond the linear response regime, we consider A = 0.1, A =
0.5, and A = 1. The wave number of the external perturbation
is set along the x axis. The wavelength of the perturbation has
to be commensurate with the size L of the main simulation
cell, which is defined by the relation NL3 = n0. Accordingly,
the wave number values of the external harmonic perturbation
are given by k = j × kmin, where kmin = 2π/L and j is a
positive integer number. We reconstruct the density response
function dependence on k in the range 0.1 � k/k0

F < 4 by
performing calculations for different j values and for different
numbers of particles.

The OF-DFT calculations of free electron gas were per-
formed for 7168, 66, 38, and 14 electrons in the simulation
cell. For 7168 particles we have kmin/k0

F 	 0.105. The grid
spacing was set to L/200.

The following KE density functional approximants were
considered: WT [33], MGP [40], LWT and LMGP [43], PGSL
[41], PGS [41], and LKT [56]. Furthermore, we consider two
cases: XC functional being set to LDA [70] and the case where
the XC functional is omitted (RPA).
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FIG. 1. Linear density response function of the UEG in the ground state at metallic density (a) with screening (RPA) and (b) without
screening. The results are computed using OF-DFT with different KE functionals and KS-DFT setting the XC potential to zero. The solid
line represents the exact analytical results. The simulation data are computed for N = 7168, N = 66, N = 38, and N = 14 electrons in the
simulation cell.

The KS-DFT simulations were performed for N = 38 elec-
trons in the main cell with 40 bands and with 30 Ha energy
cutoff. The k-point sampling was set to 10 × 10 × 10. We
present the results from KS-DFT simulations with zero XC
functional and with LDA [70]. We cross-checked the KS-DFT
results by reproducing our ABINIT data with independent cal-
culations based on the GPAW code [71–74].

For the simulation of the valence electrons in a bulk of Al
and Si, we used the unit primitive cells of the corresponding
lattice structures. The presented KS-DFT simulation results
are obtained using QUANTUM ESPRESSO (QE) [75,76] imple-
mented in the Python engine QEpy [77]. The energy cutoff
was set to 30 Ha (corresponding to a wave function plane
wave cutoff energy of 816 eV) and the k-point sampling was
set to 16 × 16 × 16. The QE results for a considered setup are
cross-checked by the GPAW simulations. OF-DFT simulations
for Al using DFTpy were run with a kinetic energy cutoff of
240 eV. Both KS-DFT and OF-DFT calculations for Al were
run with BLPS local pseudopotentials [78].

IV. RESULTS

We first present results for the static linear response func-
tion of the electron gas computed using an external harmonic
field with amplitude A = 0.01 at wave numbers 0.1 � k/k0

F <

4. Then, we present an analysis of the accuracy of OF-DFT
calculations for the strongly perturbed (beyond linear re-
sponse) electron gas.

A. Linear density response

Let us first consider the ideal electron gas neglecting all
XC effects. In Fig. 1, we present the results for the density
response function computed using different KE functionals
and setting the XC functional to zero. In Fig. 1(a), we com-
pare the OF-DFT results with the screened (RPA) Lindhard
density response function (14). Additionally, in Fig. 1(a), we
show the data computed using KS-DFT with zero XC func-
tional, but nonzero Hartree mean-field potential. We observe
that, as expected, the KS-DFT data for ideal electron gas
accurately reproduce the analytical RPA result. The same is
the case for the OF-DFT data based on the WT KE func-
tional. In contrast, we see that the MGP KE functional-based
OF-DFT data significantly deviate from the exact RPA data
at 1 � k/k0

F � 2. The MGP-based results show substantial
disagreements with the exact RPA result at 0.5 � k/k0

F � 2.
The design choices leading to the MGP kernel are such that
the kernel should be optimized (i.e., optimal values for two
parameters defining the so-called “kinetic electron” [40]). The
results presented here show that without optimization MGP
fails to deliver correct response across a wide array of wave
vectors. Figure 1 shows that the LMGP results are in good
agreement with the exact RPA data at all considered wave
numbers. This is in line with the design choices that led to the
formulation of LMGP which were to yield a KE functional
based on MGP with no adjustable parameters [43]. Among
the nonlocal functionals, we note that the LWT functional (by
design) is computed by using the local density approximation
in the KE kernel n0 → n(r) [43]. The static density response
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function computed using 38 and 24 particles show close
agreement of the LWT-based data with WT-based results.
In the case of other considered smaller and larger particle
numbers, the LWT became numerically unstable at intermedi-
ate wave numbers (0.5 � k/k0

F � 2) showing large deviations
from the WT-based data for the UEG. To avoid possible spuri-
ous results, we do not consider LWT for the density response
in more nontrivial cases of strong perturbations and real
materials.

The PGSL and PGS functional-based results are in close
agreement with the exact RPA data at k � 2k0

F and at k �
k0

F . This is in agreement with the analytically enforced con-
straints to the PGSL and PGS. In general, all considered KE
functionals in Fig. 1(a) closely agree with the exact solution
(14) at k < k0

F . This can be understood by observing that the
screening leads to χRPA(k) ≈ −k2/4π in Eq. (14) at small
wave numbers since χLin(k → 0) → const [79]. Therefore,
the Coulomb term 4π/k2 in the denominator of Eq. (14)—
representing screening effect—dominates the k dependence
of the χRPA(k) at small wave numbers. This can mask the
inaccuracies of the OF-DFT results at k < k0

F .
To assess the quality of the ideal density response function

without screening, we invert Eq. (14) with χRPA(k) = χDFT
RPA (k)

being computed using the considered KE functionals in OF-
DFT and using KS-DFT data. The results obtained in this
way are presented in Fig. 1(b). Additionally, in Fig. 1(b), we
compare the DFT results with the Lindhard function which
defines the constraint (1) used to construct the considered KE
functionals. In the k → 0 limit, all considered KE functionals
reproduce the corresponding limit of the Lindhard function as
it is illustrated in Fig. 1(b) for the point at k = 0.1k0

F computed
using N = 7168 particles. In fact, it is the limit of the TF
model. At large wave numbers k > 2.5k0

F dominated by the
vW KE term, the LWT, MGP, and LMGP KE functionals
are able to correctly describe the density response function of
the ideal electron gas. This is indeed the well-known single-
particle regime in which the vW functional provides the exact
kinetic-energy value. The WT KE functional accurately repro-
duces the Lindhard function at all considered k values. Among
other constraints, the MGP functional was designed to satisfy
the relation (1) for, in principle, all wave numbers. However,
from Fig. 1, we see that the MGP results, for the reasons
mentioned before, do not satisfy the relation (1) at 0.1 �
k/k0

F � 2. In contrast and in line with the discussion above,
the LMGP-based ideal density response function is in good
agreement with the Lindhard function at the considered wave
numbers. From Fig. 1, and following the expected behavior,
the PGSL functional reproduces the Lindhard function for
k � 2k0

F and approaches the Lindhard function at k 	 4kF 0 ,
but the exact conditions in the limit of large wave numbers
are not recovered [45]. The PGS functional does not give
the correct large wave number limit defined by the vW KE
functional. Finally, we find close agreement between the LWT
and the WT-based results.

Next, we consider an interacting electron gas using the
LDA XC functional and the corresponding density response
function χLDA(k). In Fig. 2, we show the results for χLDA(k)
computed using OF-DFT and KS-DFT for N = 38 electrons
in the main simulation cell. Additionally, we compare the
results with the exact solution for the UEG with the LDA XC

FIG. 2. Density response function of the correlated UEG in the
ground state at metallic density computed using OF-DFT with differ-
ent KE functionals and KS-DFT with the LDA XC functional. The
dashed line represents the analytical result Eq. (15). The results are
computed for N = 7168 electrons in the simulation cell.

functional,

χLDA(k) = χLin(k)

1 − 4π
k2 [1 − GLDA(k)]χLin(k)

, (15)

where GLDA(k) ∼ k2 is the local field correction of the UEG
in the long-wavelength limit.

To compute GLDA(k), we used the compressibility sum rule
[80],

GLDA(k) = lim
k→0

G(k) = − k2

4π

∂2

∂n2
0

(n0Vxc[n0]). (16)

For completeness, we note that a numerical analysis of
Eq. (16) has been provided in the recent Ref. [57] both at
ambient conditions and in the warm dense matter regime.

From Fig. 2, we observe that the WT-based data are in
perfect agreement with the exact solution (15). The same is
the case for the KS-DFT data, which validates the solution
(15). The MGP-based results strongly deviate from the exact
solution (15) and the KS-DFT data at 1 � k/k0

F � 2. The
LMGP results follow the benchmark result despite showing
small deviation at around 1.5 � k/k0

F � 2. The PGSL-based
(PGS-based) OF-DFT data are in good agreement with the
solution (15) and the KS-DFT results at k/k0

F � 2 (k/k0
F � 1).

These relative deviations of the OF-DFT results from the exact
data take place at exactly same wave numbers as for the ideal
electron-gas case shown in Fig. 1(a). Clearly, the inaccuracies
in the OF-DFT results originate from the approximations in
the KE functional. Therefore, we can isolate these errors from
other possible effects by comparing the OF-DFT data and
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FIG. 3. Density perturbation magnitude at different external field
amplitudes and wave numbers in the region with δn(r) > 0 denoted
as ⊕ (positive values) and in the region with δn(r) < 0 denoted as �
(negative values). The perturbation wave number is set to k = kmin 	
0.604k0

F , k = 2kmin, k = 3kmin, and k = 4kmin. The shaded area shows
|δn(r)| < 0.1n0 values. The dashed horizontal line represents n(r) =
0. The data are computed from KS-DFT simulations with zero XC
functional for N = 38 particles in the simulation cell.

KS-DFT data computed with zero XC functional. Although
it is trivial to see for the UEG, in a strongly inhomogeneous
case, various types of numerical error cancellations might
mask to a certain degree the deficiencies of a KE functional.

B. Strongly perturbed electron gas

Let us now consider a strongly perturbed electron gas.
Specifically, we consider an electron gas with zero XC energy
in order to analyze the errors due to the approximation of the
KE functional in OF-DFT. To generate strong deviations from
the uniform case, we use A = 0.1, A = 0.5, and A = 1.0. In
Fig. 3, we show the values of the largest positive (δn⊕) and
negative (δn�) deviations of the density from the mean value
n0. We note that the |δn�| value is physically constrained
to be smaller than n0 since the electron density cannot have
negative values. In Fig. 3, we present the results computed
using the KS-DFT simulations with zero XC functional at
wave numbers of the external perturbation kmin, 2kmin, 3kmin,
and 4kmin. The data are computed for N = 38 electrons. Cor-
respondingly, we have kmin = 2π/L 	 0.604k0

F . The density
perturbation values of less than ±0.1n0 are indicated by the
gray area. From Fig. 3, one can see that, at A = 0.1, we have
|δn⊕| � 0.1n0 and |δn�| � 0.1n0. These density deviations
from the uniform case are already beyond the linear response
regime [47,48] and can be characterized as a strongly inho-
mogeneous electron gas. A further increase in the amplitude
of the external perturbation to A = 0.5 leads to the magnitudes
of the density perturbation |δn⊕| > n0 and |δn�| > 0.5n0. At
A = 1.0, almost all electrons are localized in the density ac-
cumulation regions and |δn�| ≈ n0 at kmin, 2kmin, and 3kmin.

Due to the use of the local density approximation and vari-
ous constraints in KE functionals (such as the positivity of the

FIG. 4. Density profile along the perturbation direction at A =
0.5 and k 	 1.208k0

F . The results are computed using OF-DFT with
WT functional and KS-DFT and setting the XC functional to zero
for both. The solid line is the density values n = n0 + δn with δn
computed using the RPA density response function Eq. (14) of the
UEG in Eq. (13).

density and Pauli potential, and an exact single-particle limit),
OF-DFT is expected to describe strongly inhomogeneous sys-
tems with a certain accuracy. This has motivated us to look at
the density response of the electron gas to a strong external
perturbation. In Fig. 4, we show the density profile computed
for the perturbation amplitude A = 0.5 and the wave number
k = 2kmin using the WT functional in OF-DFT and using KS-
DFT, respectively, with the XC functional set to zero in both.
We compare the KS-DFT and OF-DFT results with the den-
sity values n = n0 + δn from the linear response theory with
δn being computed using the RPA density response function
Eq. (14) of the UEG in Eq. (13). From this figure, we see that
the linear response theory gives nonphysical negative values
for the density since A = 0.5 is well beyond the weak pertur-
bation regime [34,47]. In contrast, the OF-DFT results based
on the WT functional are in close agreement with the KS-DFT
results and, as expected, always positive. We do not consider
higher-order response functions of the UEG appearing in the
Taylor expansion of the density perturbation with respect to
weak external perturbation [81,82]. In fact, the considered
KE functionals are designed to reduce (analytically at all or
certain wave numbers) to the Lindhard function in the UEG
limit. Nevertheless, it can be seen from a corresponding Taylor
expansion that the first-order density response dominates over
contributions of higher-order terms. As we show next, this
correlates with the observation that the KE functionals repro-
ducing correct first-order density response (at a given wave
number of the perturbation) provide more accurate results.

The difference in the density between the OF-DFT and KS-
DFT results 	n(r) along the perturbation direction is shown
in Fig. 5 for A = 0.1 and k = 2kmin for both KS-DFT and OF-
DFT simulations with different KE functionals. We observe
that the OF-DFT data computed using the WT, LMGP, PGSL,
and PGS KE functionals are in good agreement with the
KS-DFT data. This clearly illustrates that the KE functionals
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FIG. 5. Difference in the density between the OF-DFT and KS-
DFT results 	n(r) along the perturbation direction at A = 0.1 and
k 	 1.208k0

F . The results are computed using OF-DFT with different
KE functionals and KS-DFT setting the XC potential to zero.

based on the linear response function χLin(k) can remain valid
beyond the weak density perturbation regime [given that they
reproduce χLin(k) in the UEG limit]. In contrast, the MGP-
and LKT-based results show significant errors in the density
values compared with the KS-DFT data. This is not surprising
since these functionals are not able to accurately describe the
ideal density response function of the UEG at the considered
wave number k = 2kmin 	 1.21k0

F [see Fig. 1(a)].
To further analyze the quality of the considered KE func-

tionals, we present histograms of the largest values of the error
in the density accumulation and depletion regions at different
values of the perturbation amplitude A and wave number k in
Fig. 6. We consider perturbation amplitudes A = 0.1, A = 0.5,
and A = 1 and wave numbers k = kmin 	 0.6k0

F [Figs. 6(a)
and 6(b)], k = 2kmin [Figs. 6(c) and 6(d)], and k = 3kmin

[Figs. 6(e) and 6(f)]. To quantify the error in the electron den-
sity, we measure the relative density deviation of the OF-DFT
results relative to the KS-DFT data,

	ñ[%] = δnOF-DFT − δnKS-DFT

max|δnKS-DFT| × 100%. (17)

We compute the 	ñ values for the density accumulation
(δn(r) > 0) and density depletion [δn(r) < 0] regions sepa-
rately. The former is presented in the panels labeled by ⊕ and
the latter in the panels labeled by � in Fig. 6. The gray areas
depict error values less than ±1%. From Fig. 6 we see the
following: The LMGP KE functional delivers rather accurate
results with 	ñ < 5% for density perturbations δn/n0 � 2.4
(A � 1) and all considered wave numbers. The WT functional
exhibits 	ñ < 5% for A � 0.5 (A = 1) at k 	 0.604k0

F and
k 	 1.21k0

F (k 	 0.604k0
F ). The PGSL and PGS KE func-

tionals are accurate at k � k0
F for the harmonically perturbed

inhomogeneous electron gas with δn/n0 � 0.5. The PGSL is

FIG. 6. The largest value of the error in the relative density devi-
ation of the OF-DFT data from the reference KS-DFT data, Eq. (17),
in the region with δn(r) > 0 (top panel, denoted ⊕) and in the region
with δn(r) < 0 (bottom panel, denoted �) for A = 0.1, A = 0.5, and
A = 1 at k 	 0.604k0

F . The gray area indicates |	ñ⊕| � ±1% and
|	ñ�| � ±1%. The results are computed for the electron gas with
the XC potential set to zero.

slightly more accurate than PGS at A = 0.1 and k 	 0.604k0
F

and for the density accumulation region at k 	 0.604k0
F and

A = 0.1 [see Fig. 6(e)]. For other parameters, the PGS-based
results are somewhat more accurate than the PGSL-based
data. The LKT KE functional is accurate at k � 0.5k0

F for
the harmonically perturbed inhomogeneous electron gas with
δn/n0 � 0.5. Finally, the MGP KE functional is accurate
at k � 0.5k0

F for the harmonically perturbed inhomogeneous
electron gas with δn/n0 < 0.5 and cannot be considered as
reliable at larger wave numbers.

Summarizing the key findings from the data presented in
Fig. 6 and for the UEG limit, we conclude that the accu-
racy of a KE functional for the inhomogeneous regime with
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FIG. 7. Bulk electron density of Al with an fcc structure. Vol-
ume rendering is used to visualize (a) the electron density for the
unperturbed case (A = 0), and the density perturbation due to an
external harmonic perturbation with the amplitude A = 0.01 and
wave numbers (b) k 	 0.9k0

F , (c) k 	 1.8k0
F , and (d) k 	 2.7k0

F . Al
atoms are shown as green spheres.

δn/n0 � 1.5 (A � 0.5) strongly correlates with its accuracy
for the density response in the limit of the UEG.

C. Bulk aluminum with fcc lattice

As an example for the application of our approach to a real
system, we next consider bulk Al with an fcc structure. In
general, the electronic density in materials is inhomogeneous.
This is illustrated in Fig. 7(a), where we show the electron
density in the unperturbed case using volume rendering. The
results presented in Fig. 7 are computed using KS-DFT with
an LDA [70] XC functional. Additionally, we show the den-
sity perturbations created by an external harmonic field with
the amplitude A = 0.01 and the wave numbers k 	 0.9k0

F
[Fig. 7(b)], k 	 1.8k0

F [Fig. 7(c)], and k 	 2.7k0
F [Fig. 7(d)].

In contrast with the UEG case, one can see from Fig. 7 that
the density perturbation is also inhomogeneous in the direc-
tion perpendicular to the external harmonic perturbation wave
vector (which is indicated in Fig. 7 by an arrow). To quanti-
tatively analyze the difference between OF-DFT results and
KS-DFT results, we consider the projection of the density and
density perturbation onto the x axis along which the harmonic
perturbation is directed.

In Fig. 8, we present the corresponding results for the
density projection along the x axis computed using OF-DFT
with different KE functionals and using KS-DFT. We used
the same LDA XC functional in all calculations. The density
value is shown in the units of the mean density of the valence
electrons n0 	 1.81 × 1023 cm−3.

FIG. 8. Profile of the density projection n(x)/n0 on the x axis in
units of the mean valence electron density (n0 	 1.81 × 1023 cm−3).
The results are computed for the primitive unit cell of fcc Al using
OF-DFT with different KE functionals and KS-DFT; an LDA XC
functional has been used for all calculations.

Examining the data in Fig. 8, we see that a meaningful
analysis of the OF-DFT results can be performed by looking
at 	n = n − n0, which is the deviation of the density profile
from the mean electron density n0; the latter is depicted as the
dashed horizontal line in Fig. 8. First, we note that, in the case
of the KS-DFT data, 	nKS−DFT has the largest value ofabout
0.075n0, i.e., about 7.5% of the mean density. As expected
for the valence electrons of metals, this indicates that the
valence electrons are weakly perturbed by the ions in the bulk
region of Al with a fcc lattice. We note that the largest devia-
tion amplitude in the density accumulation region is smaller
than the largest density deviation magnitude in the density
depletion region by about 17%. This means that the density
inhomogeneity is not symmetric with respect to the positive
and negative deviations from the mean density. Comparing
the 	n data computed from the OF-DFT simulations with the
results from the KS-DFT simulations, we find that the WT and
LMGP-based results closely reproduce the KS-DFT data, with
a maximum relative error of about 3%. The MGP data exhibit
a larger disagreement with the KS-DFT data with a maximum
relative error in 	n of about 9%. In the case of the PGSL KE
functional, the largest relative errors in 	n are about 35%. For
the LKT and the PGS KE functionals, we observe the largest
relative errors in 	n of about 44% and 47%, respectively.
Therefore, as one might expect, the semilocal GGA KE func-
tionals are less accurate for the OF-DFT calculations of the
density compared with the other fully nonlocal KE functionals
considered in this case. The disagreement between OF-DFT
and KS-DFT results are most pronounced around the maxima
and minima of the density. We do not consider the effect of
these observations on the calculation of other bulk properties
since the effect of density errors can be masked or canceled to
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a certain degree by other effects, e.g., the behavior of the total
energy [39]. We next proceed to the analysis of the results
for the density response to the external harmonic perturbation
computed using OF-DFT and KS-DFT.

In Fig. 9, we show the density perturbation δn = nA −
nA=0 induced by an external harmonic potential with the am-
plitude A = 0.01 and wave numbers k 	 0.9k0

F [Fig. 9(a)],
k 	 1.8k0

F [Fig. 9(b)], and k 	 2.7k0
F [Fig. 9(c)]. Additionally

to the DFT data, we provide the density perturbation values
computed using the density response function of the UEG
according to Eq. (15) at n0 	 1.81 × 1023 cm−3 (dashed line).
Comparing the KS-DFT results with the UEG model results,
we see that the UEG model is able to reproduce the KS-DFT
data at all wave numbers considered despite the microscopic
inhomogeneities in both the unperturbed and perturbed den-
sity distributions (as illustrated in Fig. 7). To understand this
observation, we note that the used harmonic perturbation can
be considered macroscopic since it acts at all space points
and the reaction of the system to this perturbation observed in
Fig. 9 is a macroscopic density response since we have aver-
aged over the density values in the direction perpendicular to
the perturbation wave vector. The thus obtained macroscopic
static density response of the valence electrons in metallic
Al is accurately described by the UEG model. Although it
is considered to be common knowledge, we demonstrate it
quantitatively in this way. This example demonstrates also
how the direct perturbation approach can be used to acquire
a physical picture of electronic properties in real materials.

Let us now summarize the performance of the consid-
ered KE functionals within OF-DFT for the description of
the density perturbations presented in Fig. 9. Despite being
generated on top of an inhomogeneous density, the quality of
the density response from OF-DFT relative to the KS-DFT
results correlates with the observations for the UEG discussed
in Sec. IV A. The WT- and LMGP-based results closely repro-
duce the KS-DFT data. In spite of the inaccurate unperturbed
density values, the PGSL-based results for the density per-
turbation by the weak external harmonic field are in good
agreement with the KS-DFT data at k = kmin 	 0.9k0

F , k =
2kmin 	 1.8k0

F , and k = 3kmin 	 2.7k0
F (being slightly worse

for the latter). This can be due to the aforementioned effect of
the averaging of the density inhomogeneities and due to the
small magnitudes of these density inhomogeneities compared
with the mean density value. The PGS data are similar to
that of PGSL at k = kmin and k = 2kmin, but is not able to
adequately describe the density perturbation at k = 3kmin. In
the case of the MGP functional, we see from Fig. 9 that the
corresponding results have large deviations from the KS-DFT
data at wave numbers k 	 0.9k0

F and k = 3 	 2.7k0
F and are

in close agreement with the KS-DFT data at k 	 1.8k0
F . The

LKT-based results significantly underestimate the density per-
turbation values at k = 2kmin and are in rather close agreement
with the KS-DFT data at k = kmin and k = 3kmin. This is
consistent with the pattern we have observed considering the
density response of the UEG in Sec. IV A.

D. Bulk silicon with fcc, bcc, and cd lattice

Next, we consider bulk Si with an fcc lattice, body-centered
cubic (bcc) lattice, and semiconducting crystal diamond (cd)

FIG. 9. Projection of the density perturbation profile δn(x)/n0

on the x axis in units of the mean valence electron density (n0 	
1.81 × 1023 cm−3). The results are computed for the primitive unit
cell of fcc Al using OF-DFT with different KE functionals and KS-
DFT; an LDA XC functional has been used for all calculations. The
density perturbation is induced by an external harmonic field with the
amplitude A = 0.01 and wave numbers (a) k 	 0.9k0

F , (b) k 	 1.8k0
F ,

and (c) k 	 2.7k0
F .
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FIG. 10. Density response δn(x)/n0 in units of the mean valence
electron density (n0 	 2.82 × 1023 cm−3). The results are computed
for the primitive unit cell of fcc Si using OF-DFT with different
KE functionals and KS-DFT; an LDA XC functional has been used
for all calculations. The density perturbation is induced by an exter-
nal harmonic field with the amplitude A = 0.01 and wave numbers
(a) k 	 0.8k0

F , (b) k 	 1.61k0
F , and (c) k 	 2.42k0

F .

phase. In Figs. 10 and 11, we show the density perturbation
values at k = kmin = 2π/L, k = 2kmin, and k = 3kmin, where
L is the corresponding length of the unit cell. We set the
XC functional to LDA [70] in both KS-DFT and OF-DFT
simulations. For the fcc lattice, we have kmin 	 0.8k0

F and for
the bcc lattice we have kmin 	 1k0

F . Similar to the fcc Al case
and for the same reasons, we see that the density perturbations
in the fcc and bcc Si are accurately described by the UEG
model. Correspondingly, the WT functional–based OF-DFT
data are in close agreement with the KS-DFT data for both
the fcc and bcc structures. Similarly to the case of fcc Al, the
performance of the other considered KE functionals strongly
correlates with their accuracy for the density response in the
limit of the UEG at relevant wave numbers.

In the case of the cd Si phase, we see from Fig. 12 that the
UEG model is less accurate. This is expected since cd Si is
a semiconductor. The disagreements between the UEG model
and KS-DFT results are particularly pronounced at k = 2kmin

and k = 3kmin (for cd Si we have kmin 	 0.64k0
F ). Despite

being based on the UEG model [in the sense of Eq. (1)], the
WT, LMGP, PGSL, and PGS KE functionals (used in the OF-
DFT simulations) provide better agreement with the KS-DFT
data than the UEG model. This demonstrates the versatility
of these functionals for the description of bulk metals and
semiconductors [13,39–43]. Additionally, we observe that the
LKT and PGS KE functionals provide results similar to each
other for cd Si.

V. CONCLUSIONS AND OUTLOOK

We have demonstrated the application of the direct per-
turbation approach for the test and analysis of various
KE functionals for OF-DFT calculations. By measuring the
density response of the UEG to an external harmonic pertur-
bation, we are able to cross-check whether a KE functional
satisfies the constraint (1). We emphasize that this tool is
independent from the analytical reasoning used to construct
a given KE functional. As a demonstration, we analyzed
the density response generated by OF-DFT simulations us-
ing the nonlocal WT, MGP, LWT, and LMGP functionals,
a Laplacian-meta-GGA level PGSL functional, and GGA-
level LKT and PGS functionals. The WT, MGP, LWT, and
LMGP functionals were built using the constraint (1) for all
wave numbers and the PGSL (PGS) is designed to respect
the constraint (1) at k < 2k0

F (k < k0
F ). However, using the

direct perturbation approach, we found that the MGP KE
functional violates the constraint (1) at intermediate wave
numbers 0.2 � k/k0

F � 2.5. This illustrates the utility of the
direct perturbation approach for testing KE functionals.

Going beyond the UEG limit, we analyzed the results
computed using the considered KE functionals for the har-
monically perturbed inhomogeneous electron gas over a wide
range of wave numbers and density perturbation degrees. We
found a strong correlation between the performance of the KE
functionals in the UEG limit and in the strongly inhomoge-
neous case. This empirically demonstrates the importance of
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FIG. 11. Density response δn(x)/n0 in units of the mean valence
electron density (n0 	 2.75 × 1023 cm−3). The results are computed
for the primitive unit cell of bcc Si using OF-DFT with different
KE functionals and KS-DFT; an LDA XC functional has been used
for all calculations. The density perturbation is induced by an exter-
nal harmonic field with the amplitude A = 0.01 and wave numbers
(a) k 	 1k0

F , (b) k 	 2k0
F , and (c) k 	 3k0

F .

FIG. 12. Density response δn(x)/n0 in units of the mean valence
electron density (n0 	 2.03 × 1023 cm−3). The results are computed
for the primitive unit cell of cd Si using OF-DFT with different KE
functionals and KS-DFT; an LDA XC functional has been used for
all calculations. The density perturbation is induced by an exter-
nal harmonic field with the amplitude A = 0.01 and wave numbers
(a) k 	 0.64k0

F , (b) k 	 1.28k0
F , and (c) k 	 1.92k0

F .
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FIG. 13. Density profile along the perturbation direction at A =
0.01 and k 	 1.208k0

F . The OF-DFT results are computed using
the WT functional. The solid line represents the functional form
χ (k)2A cos(kx) with χ (k) being computed from a fit to the OF-DFT
results.

the constraint (1) for the construction of accurate KE func-
tionals.

Furthermore, for the example of the PGSL and PGS
KE functionals, we numerically validated the mapping of s
and q—constructed using density gradients—on k/(2k0

F ) and
k2/(2k0

F )2 in the long-wavelength expansion of the inverse
density response function for the construction of KE func-
tionals. This is an important result since such a mapping
is also used for the construction of XC functionals using
the local field correction (XC kernel) of the UEG (e.g., see
Ref. [83]).

The application of the direct perturbation approach for the
analysis of the density response properties and performance
of the KE functionals for real materials are demonstrated for
the example of Al with an fcc lattice structure and Si with fcc,
bcc, and cd phases. We demonstrated that the comparison of
KS-DFT data for the density perturbation to the UEG model
allows one to understand the role of the microscopic density
inhomogeneity (induced by ions) with respect to the density
response properties of the valence electrons. Despite of the
microscopic inhomogeneities present in Al and in Si with fcc
and bcc structures, the macroscopic density response of the
valence electrons is accurately described by the UEG model.
As the result, the quality of the considered KE functionals
for the description of the density perturbation in fcc Al, fcc
Si, and in bcc Si is similar to that for UEG case. Despite
being based on the UEG model, the WT and LMGP nonlocal
functionals provide an adequate description of the density
response of cd Si state. In general, the PGS and LKT have
similar quality and the PGSL performs best among considered
semilocal functionals.

In summary, the results clearly show that the quality of the
static response functions of periodic bulk systems (shown for
the example of the UEG, fcc Al, fcc Si, and bcc Si) require KE
functionals that specifically encode UEG response behavior
in the limiting case of constant ground-state densities. While
such a requirement is not important for perturbations with
small wave vectors, it is crucial for high-k perturbations with
repercussions beyond ground-state OF-DFT.

When modeling optical and ultrafast electronic properties
of materials, time-dependent OF-DFT simulations of bulk
systems, therefore, will need to move away from semilocal
KE functionals and instead employ fully nonlocal functionals
to be able to provide physical results for high-k perturbations
for periodic solids.

For modeling warm dense matter, Graziani et al. [20]
recently pointed out the possible importance of quantum non-
locality effects for the description of the shock propagation.
Preliminary results computed using a vW functional–based
quantum KE potential indicate that the induced density
change at a shock front can reach about 0.5n0 for wave num-
bers k � k0

F . Taking into account these findings and the result
of the present analysis, we suggest that the potential generated
by a semilocal (e.g., PGSL and PGS) KE functional can be
used for a more reliable investigation of the impact of quan-
tum nonlocality on the shock propagation in warm dense mat-
ter with strongly degenerate electrons. We single PGSL and
PGS KE functionals due to their relatively simple form com-
pared with the fully nonlocal KE functionals. This is advan-
tageous for the implementation into existing hydrodynamics
codes for which it is important to minimize a computational
overhead due to calculation of the force field. Additionally,
semilocal KE functionals such as PGSL are able to provide
correct density response properties of electrons at k � k0

F ,
which is important for the adequate description of the ion
screening in warm dense matter [55,84,85]. We note that the
finite-temperature LKT functional [86] and finite-temperature
WT functional [54] can be used to extend the present analysis
into the WDM regime with partially degenerate electrons and
to the simulation of shock propagation at high temperatures
relevant for inertial confinement fusion experiments.

In this work, we considered the KE functionals constructed
using the Lindhard density response function. There are other
types of the density response function that can be used for the
construction of a KE functional [87], such as the quadratic
density response function of the ideal electrons gas [88,89].
Since the analytical forms of these density response func-
tions are known, the presented harmonic perturbation–based
approach can be used as an independent tool for testing the
correctness of the implementation of the KE functionals built
using any of these density response functions.

Finally, we also note that a more detailed study of the
response of semiconductors is the subject of future work,
where in addition to the nonlocal KE functionals with density-
independent kernel considered here, one can employ KE
functionals based on the jellium-with-gap model [46].
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APPENDIX: THE CALCULATION OF THE DENSITY
RESPONSE FUNCTION FROM THE DENSITY

PERTURBATION VALUES

In Fig. 13, we show the density perturbation profile in
the case of the ideal free electron gas with A = 0.01 and
k 	 1.208k0

F (with perturbation direction along the x axis).
The OF-DFT results are computed using the WT functional.
The solid line follows the functional form χ (k)2A cos(kx),
i.e., Eq. (13). The value of χ (k) has been obtained by fitting
the OF-DFT results using Eq. (13).
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