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a b s t r a c t

In this manuscript, we present new capabilities and implementations on massively parallel computers
of our ab initio orbital-free density functional theory software (ATLAS). In addition to the electronic
ground-state capabilities, the extensive structure-related functionalities including geometrical structure
relaxation and molecular dynamics simulation have been implemented in the new version of ATLAS. The
effectiveness of these extensions is assessed through simulations of nanocrystalline and warm dense
Al. The simulated results agree excellently with previous experimental and theoretical data, validating
new capabilities. Furthermore, new version of ATLAS exploiting the massively parallel implementation
with message passing interface shows high efficiency, as exemplified by its ability to simulate a system
containing 4 million atoms only taking less than 1 h with 2048 processors. The scalable parallel imple-
mentation of the ATLAS package with extensive capabilities holds considerable promise for simulation of
large-scale systems with millions of atoms.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The ab initio method based on the traditional Kohn–Sham
density functional theory (KS-DFT) [1,2] has become an invalu-
able tool across a wide range of disciplines, including materials
physics and chemistry, earth sciences, surface science, and biology
[3–7] because of its accurate descriptions of materials’ properties.
However, KS-DFT approaches have long been considered inappro-
priate for simulating systems of ten thousands of atoms because of
their heavy computational demands, which scale as O(N3), where
N is the total number of electrons [8–10]. The development of
a new approach to accelerate these calculations without greatly
sacrificing accuracy is thus highly desirable. Orbital-free density
functional theory (OF-DFT) is potentially an efficient theory for
large-scale quantum mechanical simulations because of its linear
scaling behavior [10,11].

Recently, we developed a real-space finite-difference method
for the numerical solution of OF-DFT using a direct energy-
minimization scheme for periodic systems and coded it into the
ATLAS software package [11,12]. The accuracy of our method is
demonstrated through direct comparisons to results from KS-DFT
simulations for periodic systems of Mg, Al, and Al3Mg. Particularly,
our calculations indicate that our method can be used to simulate
systems containing ten thousands of atoms per cell using a single
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processor. However, the capability of only static calculations of the
total energy in this ATLAS package severely limits its applicability,
as the package cannot be used to simulate the atomistic processes
of real systems. In particular, our previous ATLAS package only
implemented a sequential scheme, impeding its application for
simulations of large-scale systems. Extension of the capabilities
and implementation of a parallel scheme of ATLAS are crucial to
its future success and popularity.

This work provides an overview of the latest ATLAS devel-
opments, focusing primarily on extensive capabilities including
geometrical structure relaxation and molecular dynamics (MD)
modules (Fig. 1(a)). In particular, a massively parallel scheme was
implemented in a new version of the ATLAS package to accelerate
significantly the simulation rate by utilizing large-scale parallel
computers. The remainder of the text is organized as follows.
Section 2 presents the detailed implementation of geometrical
structure relaxation,MD, andparallelismof theATLASpackage.We
evaluate the numerical performance of ATLAS for a periodic solid
Al system and warm dense matter (WDM) in Section 3. Finally,
concluding remarks are presented in Section 4.

2. Theory and background

2.1. Geometrical structure relaxation

One major application of theoretical simulations is geometrical
structure relaxation; i.e., determination of a local minimum on the
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Fig. 1. (a) Capabilities of ATLAS. (b) Slab domain decomposition using four processors. (c) Pencil domain decomposition using a 4 × 3 processor grid. The buffer region
(reddish) is used to store information for the points near a domain boundary for the center processor in slab (d) and pencil (e) decompositions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

potential energy surface and the corresponding atomic configu-
ration for a given initial configuration. Geometry relaxation finds
a physically significant structure of a substance associating with
a substance as it is found in nature, which can then be used in
various theoretical investigations. The process aims to determine
the atomic configuration with minimized energy, for which the
force on each atom is acceptably close to zero.

The success of geometry relaxation depends on the accuracy
of the calculated forces. The forces on nuclei consists of vectors
of negative derivatives of the total energy with respect to the nu-
clear coordinates. According to OF-DFT, the total energy functional
E[ρ(r)] of a N-electron system can be written (in atomic units) as
follows [13,14]:

E[ρ(r)] = T [ρ(r)] + EH [ρ(r)] + EXC [ρ(r)] + EI−E + EI−I , (1)

where T [ρ(r)], EH [ρ(r)], EXC [ρ(r)], EI−E and EI−I represent the elec-
tronic kinetic energy, Hartree electron–electron repulsion energy,
exchange–correlation energy, electron–ion interaction energy, and
ion–ion repulsion energy, respectively. The force on each ion under
periodic boundary conditions is calculated as follows:

Fj =
−∂E[ρ]

∂Rj
= FI−E,j + FI−I,j , (2)

where Rj is the position of the jth ion. The force on each ion is
clearly related to only the ion–electron and ion–ion interactions.
The force FI−E,j can be expressed as

FI−E,j∈α = 2Ω
∑
g>0

gνα
loc(|g|)Im[ρ(g)eig·Rj ], (3)

where Ω is the volume of the unit cell; g is determined by the
primitive vectors of reciprocal space; vα

loc(|g|) and ρ(g) denote the
ionic pseudopotential of the αth atomic species and the Fourier
components of the electron density, respectively. Obviously, it is
limited to relatively small systems due to cubic-scaling behavior
for Eq. (3). Thus, a powerful linear scalingmethodwith the cardinal
B-spline particle mesh Ewald [10] was employed to evaluate the
contribution of potential and forces for ion–electron interactions.

Finally, the force of ion–ion contribution [15,16] can be calcu-
lated using

FI−I,j = FdirI−I,j + FrecI−I,j , (4)

Here,

FdirI−I,j =
∂Edir

∂Rj
=

qj
β3

M∑
k=1,k̸=j

∑
n

qk(Rj − Rk + n)

×

[
erfc(βRjk,n)
(βRjk,n)3

+
2

√
π

e−(βRjk,n)2

(βRjk,n)2

]
(5)

and

FrecI−I,j =
4π
Ω

qj
∑
g̸=0

g

[
sin(g · Rj)

∑
k

qk cos(g · Rk)

− cos(g · Rj)
∑
k

qk sin(g · Rk)

]
e−(|g|/2β)2

|g|2
. (6)

Here, β is a parameter that controls the convergence rates of the
direct and reciprocal Ewald sums, qj is the charge on the jth ion,
M is the number of ions in the unit cell, n is the lattice vector of
periodic cell images, erfc(x) is the complementary error function,
and Rjk,n = |Rj − Rk + n|. As the computational cost of calculating
the force of the ion–ion contribution for standard Ewald summa-
tion scales quadratically, the particle–mesh Ewald method [17,18]
with linear scaling was employed to calculate the ion–ion energy
and corresponding force in our ATLAS package.

Currently, various well-established local optimization algo-
rithms (e.g., steepest descent, conjugate gradient, quasi-Newton,
and Fast Inertial Relaxation Engine) [19,20] are available. Com-
pared with the traditional conjugate gradient, the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method [21], the most popular
quasi-Newton algorithm, is widely applied to geometry relaxation
because of its fast convergence rate. However, it is infeasible to op-
timize the case associatedwith a large number of variables because
of the large memory storage requirements. An improved limited-
memory quasi-Newtonmethod (L-BFGS) [22] only requires limited
computer memory, and is thus particularly suitable for complex
optimization problems. Therefore, we implemented the L-BFGS
method in our ATLAS package to perform geometry relaxation.

2.2. Molecular dynamics

MD simulation is widely used in materials science and chem-
istry. MD simulations under experimental conditions enable ex-
perimental activity to be viewed as it occurs, and can provide
information that is not directly attainable from experiments to
help understand empirical observations. The reliability of MD sim-
ulations has always been limited by three factors: (i) the accuracy
of the forces acting on the nuclei in each MD simulation step, (ii)
the computational system size, and (iii) the length of the simu-
lation [23]. Although traditional ab initio MD simulations in the
framework of KS-DFT can provide accurate forces, they are limited
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to relatively small system sizes and time scales. Thus, traditional ab
initio MD is inappropriate for modeling many atomistic processes,
where realism can only be achieved by simulating a large system
(millions of atoms) for a long time (nanoseconds) [23]. Notably,
the computational costs of calculating forces in the framework of
OF-DFT scale linearly, which allows access to length scales directly
relevant to experimental studies. In principle, sub-micrometer
lengths can be accessed in nanoseconds with available computer
resources.

The microcanonical (NVE), canonical (NVT), and isothermal–
isobaric (NPT) ensembles are the three most widely used ensem-
bles for MD simulations, and they all have been implemented
into our ATLAS package. The NVE ensemble can be used to model
isolated systems of interest, where the classical equations of mo-
tion are adopted to describe particle motion. The NVT ensemble
allows effective control of the temperature using the Nosé–Hoover
thermostat [24,25]. For this ensemble, the following equations of
motion for particles are used:

ṙj =
pj

mj
, ṗj = Fj −

pη

Q
p ,

η̇ =
pη

Q
, ṗη =

∑
j

p2
j

mj
− Nf kBT ,

(7)

where rj is the position of the jth ion with mass mj, and η is the
thermostat with effective mass Q and momentum pη . The NPT
ensemble can be used to simulate systems with constant temper-
ature and pressure. Specifically, the temperature is also controlled
using the Nosé–Hoover thermostat, and the pressure is adjusted
using two typical barostat approaches developed by Andersen [26]
and Parrinello–Rahman [27]. In the former method, the pressure
associated with isotropic fluctuations of the simulation cell only
depends on a single variable of volume, whereas in the latter, the
pressure is controlled by variations of the volume and shape of the
simulation cell.

2.3. Parallel implementation

Our previous studies have illustrated the use of ATLAS with
the sequential scheme as a powerful tool for a single processor to
simulate a system containing ten thousands of atoms in a simu-
lated cell [12]. However, it remains a great challenge to simulate
large systems containing millions of atoms without parallelism.
Thus, it is highly desirable to implement a parallel scheme for
ATLAS to take full advantage of themassive parallelismavailable on
modern high-performance computing architectures for large-scale
simulations. A real-space finite difference expansion [28] involving
short-range operations was employed in our ATLAS method. An
efficient implementation of this method on parallel computers is
thus expected to be possible because it minimizes the amount of
data that must be communicated between processors.

In our parallelization scheme, all the terms of the Hamilton on
the real-space grids were implemented onmassively parallel com-
puters based on spatial decomposition, in which the 3D domain
was divided into equal-sized blockswith each block being assigned
to a processor in a parallel computer. Currently, twodecomposition
schemes, slab (1D) and pencil (2D) decomposition, have been
employed to divide the real-space grid points in our approach.
As illustrated in Fig. 1(b) and (c), the blocks are distributed along
only one axis in slab decomposition, whereas the 3D domain can
be partitioned into two dimensions in pencil decomposition. The
message passing interface is employed to handle data communi-
cation in ATLAS. As illustrated in Fig. 1(d) and (e), an additional
buffer region was created to store information for the points near
a domain boundary, which is used to perform finite difference
schemes for each processor. Thus, the calculation can be run in

each processor for each domain, significantly improving system
performance by reducing the communication frequency. Conse-
quently, there is no need for the massive communication required
in whole iterations except for the fast Fourier transform (FFT).
Therefore, the calculated efficiency of ATLAS is mainly determined
by the performance of the FFT. In our ATLAS package, the parallel
FFT libraries with the slab (FFTW) [29] and pencil (2DECOMP&FFT)
decompositions [30] were used to achieve high efficiency with
optimal memory use.

3. Numerical results

To illustrate the new capabilities of ATLAS, structure relax-
ation of a nanocrystalline structure of Al and MD simulations of
warm dense Al were performed. Calculations employed the local
density approximation exchange–correlation functional with
Perdew–Zunger parameterization [31]. The Wang−Teter [32] and
finite-temperature Thomas–Fermi approaches [33] were used for
the kinetic energy density functional for the geometrical struc-
ture relaxation and MD simulations, respectively. The optimized
effective pseudopotential [34] scheme was used to construct the
local pseudopotential of Al, with valence electronic configuration
of 3s23p1 and core cutoff radius of 1.2 Å. A system grid spacing
of 0.2 Å and sixth-order finite-difference expansion were used to
ensure that the total energy calculations converged to less than 1
meV/atom. All the parallelized calculations were performed using
the high-performance Tianhe-1A supercomputer at the National
Supercomputer Center of Tianjin, where each node contains a
6-core/12-thread Xeon X5650 CPU with 24-GB memory with a
maximum interconnect speed of 160 GBps.

To test the convergence of the geometrical structure relaxation
of ATLAS for a large system, a nanocrystalline structure containing
181,440 Al atoms in a cubic cell was selected as a benchmark. For
this system, a length of 150 Å can be achieved for the simulated
cell, with the corresponding grid size in real space reaching 768 ×

768 × 768. The total energy and maximum force as a function of
the number of L-BFGS steps during the geometry optimization are
presented in Fig. 2(a) and (b), respectively. Specifically, it only takes
approximately 100 steps for the total energy to converge to within
1meV/atom,whereas themaximal force is less than 0.02 eV/Å until
669 L-BFGS iterations (729 force estimations). Given the complex
structure is employed as initial structure in our calculation, ATLAS
yields significantly faster convergence.

Notably, the force convergences more slowly than the total
energy. Acceleration of the convergence rate of the force is critical
for geometry relaxation of large-scale systems. Recently, Chen et al.
proposed a new curved-line search algorithm, which can speed up
ab initio atomic structure relaxation by a factor of 2–4with respect
to traditional methods [35]. Thus, this new curved-line search
algorithm will be implemented to speed up the force convergence
of ATLAS in the future.

WDM belongs to either equilibrium or non-equilibrium states
of matter, which is characterized by elevated temperature (up to
100 eV) and high pressures (up to hundreds of TPa). Because of the
large abundance in the interiors of some large planets [36,37], in-
depth investigations of WMD is critical to understand better the
physics and chemistry of these planetary interiors. However, the
creation and investigation of WDM under controlled conditions in
the laboratory is difficult, MD simulation becomes an alternative
approach. It is generally accepted that the required number of or-
bitals scales with temperature in KS-DFT. These calculations there-
fore become computationally expensive at elevated temperature
because of the large number of fractionally occupied KS orbitals
that must be considered. In contrast, the OF-DFT method only
depends on the densitywithout suffering from scaling issues. Thus,
by offering accessibility to ultra-high temperatures at low compu-
tational cost, the OF-DFT method is an invaluable tool to model
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Fig. 2. Evolution of total energy (a) and maximum force (b) as functions of the number of L-BFGS steps during geometry relaxation for a nanocrystalline structure. The inset
of (a) shows the evolution of the total energy for the last few dozen steps.

WDM. Furthermore, previous studies have shown that the finite-
temperature Thomas–Fermi kinetic energy density functional is
suitable to simulateWDMwith sufficient precision [33,38]. There-
fore, simulations of warm dense Al were performed to test the
applicability of ATLAS for first-principles MD simulations.

Our MD simulations were performed using a supercell con-
taining 500 atoms with the NVT ensemble, and the Nosé–Hoover
thermostat was used to control the temperature. Long-timescale
molecular dynamic simulations are required to obtain reliable sta-
tistical results, and the time step must be small enough to sample
accurately the highest frequency motion for simulation at high
temperature. A time step of 0.25 fs and a total simulation time
of 25 ps (100,000 steps) were employed in our simulation. The
systemwas initially equilibrated for 5000MD steps, and data were
collected from the subsequent 95,000 steps.

The wavenumber-resolved scattering data W(k) representing
the ion character of Al were calculated using ATLAS in warm
dense regimes, where the density and temperature of the sample
are (6.3 g/cm3, 1.75 eV) and (8.1 g/cm3, 10 eV), respectively. The
calculated data are compared with experimental data [39,40] and
previous theoretical data [40,41] in Fig. 3. Our simulated results
at 6.3 g/cm3 and 1.75 eV are in excellent agreement with the ex-
perimental data [40], which further confirms the reliability of the
MD simulation in ATLAS (Fig. 3(a)). However, the theoretical data
obtained using our OF-DFT and previous KS-DFT simulations [39]
at 8.1 g/cm3 and 10 eV do not agree with the experimental mea-
surement. Specifically, the calculated height of the high-intensity
peak was significantly underestimated compared with that for the
experimental data. One possible reason provided by previous stud-
ies [42,43] is that the system is associated with non-equilibrium
states, where the ionic temperature (Ti) is lower than the exper-
imentally measured electronic temperature (Te). To estimate the
experimental Ti, non-equilibriumMD simulations were performed
using our ATLAS package at different values of Ti with a constant Te
of 10 eV. The calculated wavenumber-resolved scattering data are
compared with experimental data in Fig. 3(b). The simulated data
for Ti = 2 eV agreewell with the experiment data. Thus, our results
support the deduction of a non-equilibrium state existing for the
experimental measurement with Te = 10 eV and Ti = 2 eV.

To evaluate the performance of slab and pencil decompositions,
the static total energy of Alwith a supercell fcc structure containing
32,000 atoms was calculated using the ATLAS package. Fig. 4(a)
compares the wall time calculated using the two spatial decom-
positions. Our results demonstrate that the performances of the
two approaches were comparable for less than 200 processors.
However, for more than 200 processors, the pencil decomposi-
tion significantly outperformed the slab spatial decomposition. It

should be emphasized that the maximum achievable theoretical
limit of the spatial decomposition scheme can be estimated from
the maximized number of divided blocks, because each block is
assigned to a processor. For the system, which is discretized to
a mesh of nr = n x × ny × n z spatial collocation points, the
maximized number of divided blocks is determined by max(nx, n
y, n z) and nr /min(nx, n y, n z) for the slab and pencil decompo-
sition algorithms, respectively. It is reasonably understood that
pencil decomposition is generally more efficient than slab decom-
position on a large number of processors. Therefore, the pencil
decomposition was employed in the following massively parallel
calculations.

To illustrate the computation time for each term, we per-
form a full optimization of a system containing 1.372 million Al
atoms using 2048 processors. The time spent calculating each of
terms (summing all the time contributions of energy, potential,
stress and force) are presented in Fig. 4(b). The kinetic terms of
Thomas−Fermi (TF) and von Weizsäcker (VW), and exchange–
correlation term are evaluated in real space, while the Hartree
and the nonlocal part of Wang–Teter (WT) functional are mainly
calculated in reciprocal space using FFT. All the terms calculated
in real-space are approximately linear scaling as the number of
atoms is increased, while the dominant contribution comes from
evaluation of the terms including nonlocal part of WT (45%) and
Hartree (20%) due to involving the large number of FFTs. Further-
more, these terms can also be calculated using real-space method
with the large scaling of the parallelization, we will try to use the
real-space method for further optimization.

To evaluate the computational efficiency of the parallel ATLAS
package, static simulations of a supercell structure of Al containing
different numbers of atoms was performed using 2048 processors.
The totalwall time and its contributions for optimizing the electron
density and evaluating the force and stress as a function of the
number of atoms are presented in Fig. 5(a). The total wall time
for simulating a large system containing 4 million atoms was
only less than 1 h, indicating the high efficiency of ATLAS. It is
noteworthy that the parallel ATLAS package retains approximately
linear time scaling for sizes up to 4million atoms and that the time
for evaluating the force and stress is negligible. To illustrate the
parallel scalability of ATLAS, we performed a static simulation of
a fcc Al periodic supercell containing 2.048 million atoms using
different processors. The speedup ratio and parallel efficiency as a
function of the number of processors with respect to 1024 proces-
sors are plotted in Fig. 5(b). The parallel efficiency reached 0.920 for
2.048million atoms on 4096 processors, demonstrating the strong
parallel scaling of ATLAS for simulations of large-scale systems.
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Fig. 3. (a) Wavenumber-resolved scattering data of Al calculated at 6.3 g/cm3 and 1.75 eV with ATLAS compared with experimental and previous KS-DFT data. (b) Our
calculated wavenumber-resolved scattering data with Ti = 1, 2, and 10 eV and Te = 10 eV. To facilitate the comparison, experimental and previous theoretical data are also
shown.

Fig. 4. (a) Comparison of total time (wall time) for density optimization of Al with a supercell fcc structure containing 32,000 atoms with slab and pencil domain
decompositions. (b) The time spent on each of the terms during the optimization for a system containing 1.372 million Al atoms using 2048 processors with ATLAS. TAll
is the total time.

Fig. 5. (a) Total time (wall time) using ATLAS to perform a static calculation including density optimization, force and stress estimation for an Al supercell containing up to
4 million atoms using 2048 processors. (b) Speedup ratio (solid line) and parallel efficiency (dash line) as a function of the number of processors.

4. Conclusion

In this article, we have presented the extensions of structure-
related capabilities of ATLAS including atomic structure relax-
ation and finite temperature molecular dynamics simulations. The
extended capabilities have been validated by the simulations of

periodic metallic Al. Moreover, the parallel version of ATLAS was
developed to effectively take full advantage of the massive par-
allelism. The simulations indicate that the new version of ATLAS
has high efficiency and strong scalability, making it as a highly
efficient and portable massively parallel computational tool for a
wide range of materials science issues of large-scale systems.
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