
ADVANC ED R EV I EW

DFTpy: An efficient and object-oriented platform for
orbital-free DFT simulations

Xuecheng Shao1 | Kaili Jiang1 | Wenhui Mi1 | Alessandro Genova1,3 |

Michele Pavanello1,2

1Department of Chemistry, Rutgers
University, Newark, New Jersey
2Department of Physics, Rutgers
University, Newark, New Jersey
3Kitware Inc., 1712 U.S. 9 Suite
300, Clifton Park, New York, New York

Correspondence
Michele Pavanello, Department of
Physics, Rutgers University, 101 Warren
Street, Newark, NJ 07102.
Email: m.pavanello@rutgers.edu

Xuecheng Shao, Wenhui Mi, and Kaili
Jiang, Department of Chemistry, Rutgers
University, Newark, New Jersey.
Email: xs161@newark.rutgers.edu (X.S.),
wenhui.mi@rutgers.edu (W.M.), and
kj385@newark.rutgers.edu (K.J.)

Funding information
Basic Energy Sciences, Grant/Award
Number: DE-SC0018343; Directorate for
Computer and Information Science and
Engineering, Grant/Award Number:
ACI-1931473; Division of Chemistry,
Grant/Award Number: CHE-1553993

Abstract

In silico materials design is hampered by the computational complexity of

Kohn–Sham DFT, which scales cubically with the system size. Owing to the

development of new-generation kinetic energy density functionals (KEDFs),

orbital-free DFT (OFDFT) can now be successfully applied to a large class of

semiconductors and such finite systems as quantum dots and metal clusters.

In this work, we present DFTpy, an open-source software implementing

OFDFT written entirely in Python 3 and outsourcing the computationally

expensive operations to third-party modules, such as NumPy and SciPy. When

fast simulations are in order, DFTpy exploits the fast Fourier transforms from

PyFFTW. New-generation, nonlocal and density-dependent-kernel KEDFs are

made computationally efficient by employing linear splines and other methods

for fast kernel builds. We showcase DFTpy by solving for the electronic struc-

ture of a million-atom system of aluminum metal which was computed on a

single CPU. The Python 3 implementation is object-oriented, opening the door

to easy implementation of new features. As an example, we present a time-

dependent OFDFT implementation (hydrodynamic DFT) which we use to

compute the spectra of small metal clusters recovering qualitatively the time-

dependent Kohn–Sham DFT result. The Python codebase allows for easy

implementation of application programming interfaces. We showcase the com-

bination of DFTpy and ASE for molecular dynamics simulations of liquid

metals. DFTpy is released under the MIT license.

This article is categorized under:

Software > Quantum Chemistry

Electronic Structure Theory > Density Functional Theory

Data Science > Computer Algorithms and Programming

KEYWORD S

DFT, materials science, TDDFT

Received: 5 February 2020 Revised: 17 April 2020 Accepted: 4 May 2020

DOI: 10.1002/wcms.1482

WIREs Comput Mol Sci. 2021;11:e1482. wires.wiley.com/compmolsci © 2020 Wiley Periodicals LLC. 1 of 16

https://doi.org/10.1002/wcms.1482

https://orcid.org/0000-0002-1612-5292
https://orcid.org/0000-0001-8294-7481
mailto:m.pavanello@rutgers.edu
mailto:xs161@newark.rutgers.edu
mailto:wenhui.mi@rutgers.edu
mailto:kj385@newark.rutgers.edu
http://wires.wiley.com/compmolsci
https://doi.org/10.1002/wcms.1482
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fwcms.1482&domain=pdf&date_stamp=2020-06-19

1 | INTRODUCTION

1.1 | Theoretical background

Orbital-free Density Functional Theory (OFDFT) is an emerging technique for modeling materials (bulk and
nanoparticles) with an accuracy nearing the one of Kohn–Sham DFT (KSDFT) and with an algorithm that is almost lin-
ear scaling, O(Nlog(N)), both in terms of work and memory requirements.1–3 The most efficient OFDFT software2–5 can
approach million-atom system sizes while still accounting for the totality of the valence electrons. The central ingredi-
ent to OFDFT is the employment of pure Kinetic Energy Density Functionals (KEDFs). Commonly adopted KEDF
approximants are not accurate enough to describe strongly directional chemical bonds—a category which unfortunately
includes most molecules.6,7 However, new-generation nonlocal KEDFs allow OFDFT to model quantum dots and semi-
conductors.8,9 Hence, OFDFT is to be considered an emerging technique for computational materials science, chemis-
try, and physics.

In OFDFT, the electronic structure is found by direct minimization of the DFT Lagrangian,

L ρ½ �=E ρ½ �−μ

ð
ρ rð Þdr−Ne

� �
, ð1Þ

where E[ρ] is the electronic energy density functional, and Ne the number of valence electrons, taking the form,

E ρ½ �=Ts ρ½ �+EH ρ½ �+Exc ρ½ �+
ð
vext rð Þρ rð Þ dr, ð2Þ

where EH is the Hartree energy, Exc the exchange-correlation (xc) energy, Ts the noninteracting kinetic energy and
vext(r) is the external potential (in OFDFT, typically given by local pseudopotentials).

Minimization of the Lagrangian with respect to the electron density function, ρ(r), yields the density of the ground
state. In other words,

ρ rð Þ=argmin
ρ

L ρ½ �f g: ð3Þ

Equivalently, ρ(r) can be obtained by solving the Euler–Lagrange equation,

δE ρ½ �
δρ rð Þ−μ=0, ð4Þ

which is expanded as follows

δTs ρ½ �
δρ rð Þ + vs rð Þ−μ=0, ð5Þ

where we grouped vs rð Þ= δEH ρ½ �
δρ rð Þ + δExc ρ½ �

δρ rð Þ + vext rð Þ.
In conventional KSDFT, the KEDF potential, δTs ρ½ �

δρ rð Þ , is not evaluated and instead the kinetic energy is assumed to be
only a functional of the KS orbitals which in turn are functionals of the electron density. In OFDFT, the KEDF poten-
tial is available by direct evaluation of the functional derivative of an approximate KEDF. Thus, the Euler equation (5)
can be tackled directly. In practice, most often the minimization of the Lagrangian in Equation (1) is carried out
directly with Equation (5) as its gradient.

1.2 | OFDFT software background

In this work, we present DFTpy, a flexible and object-oriented implementation of OFDFT. The software builds all the
needed energy and potential terms so that the minimization of the energy functional can be carried out. The

2 of 16 SHAO ET AL.

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

optimization itself can be done by several commonly adopted nonlinear, multivariable optimizers (such as quasi-
Newton methods).

DFTpy situates itself in a fairly uncultivated field, as unlike KSDFT, OFDFT software are few.2,4,10–12 As most pro-
jects, DFTpy started out as a toy project collecting Python 3 classes defining NumPy.Array subclasses and associated
methods for handling functions on regular grids. Functionalities included interpolations and conversion between file
types. This was released under the moniker PBCpy.13 The next step for DFTpy came in 2018 when classes related to the
basic energy terms in materials were developed. Hartree energy based on NumPy's fast Fourier transforms (FFTs),
exchange-correlation, and KEDF functionals based on pyLibXC.14 Efforts to formalize the previous implementation cul-
minated in recent months with a strong focus on the efficiency of the codebase for its application to million atom
systems.

The current state-of-the-art in OFDFT software is PROFESS,2 GPAW,10 ATLAS,12 and DFT-FE.4 GPAW, DFT-FE,
and ATLAS are real-space codes implementing either finite-element or finite-difference methods. Similarly to PRO-
FESS, DFTpy relies on Fourier space not only for the treatment of Coulomb interactions but also for the computation
of gradient and Laplacian operations (needed for instance for the von Weizsäcker term).

The distinguishing new features of DFTpy lie in its object-oriented core design composed of several important
abstractions: Grid, Field (i.e., functions on grids), FunctionalClass (i.e., an abstraction encoding an energy functional).
These enable fast implementations of new functionalities. As an example, in this work, we showcase a new time-
dependent OFDFT15–18 implementation for the computation of optical spectra within an OFDFT framework, and an
application programming interface (API) combining DFTpy with Atomic Simulation Environment (ASE),19 which is a
set of tools and Python modules for atomistic simulations, for the realization of molecular dynamics simulations.

More specifically, DFTpy distills efficient methods for the computation of structure factors via the smooth particle-
mesh Ewald method,20,21 and an in-house, line-search-based electron density optimization algorithm which has the
ability to dynamically adjust the effective grid cutoff during the optimization. To the best of our knowledge, DFTpy con-
tains the most efficient implementation to date of new-generation nonlocal KEDFs. These functionals are known to
give a major boost to the performance of semilocal and nonlocal KEDFs but are associated with an unsustainable
increase in the computational cost. DFTpy solves the problem by implementing an evaluation of the KEDF functional
derivative (potential) that exploits linear splines, bringing down the computational cost to less than 20 times the one of
a GGA KEDF.

The paper is organized as follows. We first describe the most important classes defining the DFTpy codebase. We
proceed to describe the core aspects responsible for the efficient implementation. Finally, we provide the reader with
two examples: first showcasing DFTpy timings and linear scalability with system size and then DFTpy's ease of imple-
mentation of new methods by presenting a time-dependent OFDFT implementation that we apply to the computation
of optical spectra of small metallic clusters.

2 | CLASSES AND SOFTWARE WORKFLOW

2.1 | DFTpy classes

DFTpy bases itself on PBCpy, a collection of classes for handling functions and fields of arbitrary rank in periodic
boundary conditions.13 PBCpy's main classes are Grid and Field which are both NumPy.Array subclasses.

The Grid class (comprising of BaseGrid, DirectGrid, and ReciprocalGrid) is aware of all the attributes needed to
define a grid, such as the lattice vectors, the number of space discretization points in each direction. Subclasses of Grid
include RealSpaceGrid and ReciprocalSpaceGrid which are self-explanatory.

The Field class (comprising of BaseField, DirectField, and ReciprocalField) encodes a function defined on a Grid.
There are several methods bound to this class. For example, if Field is defined on a Direct/ReciprocalGrid it contains .
fft/.ifft, the forward/inverse Fourier Transform. Additional bound methods include spline interpolations, integrals, and
the appropriately extended definitions of the common algebraic operations (=, +, *, /). Fields can be of arbitrary rank.
For instance, the electron density is a rank one field, while the density gradient is a rank three field whether they are
represented in real or reciprocal space.

DFTpy features classes, such as FunctionalClass for the evaluation of the various terms in the energy: the kinetic
energy density functional, KEDF, the exchange-correlation functional, XC, the electron-ion local pseudopotential,
IONS, and the Hartree functional, HARTREE. Such a software structure is compatible with virtually all types of

SHAO ET AL. 3 of 16

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

electronic structure methods, and not only OFDFT. Thus, we expect in future releases of DFTpy to also include KSDFT
as well as APIs at the level of the energy functional for external KSDFT codes and particularly those offering efficient
Python interfaces.10,22,23

2.2 | Other classes and APIs

DFTpy contains classes for handling the optimization of the electron density and for handling the user interface. The
optimization class is a standard optimizer which will probably be spun off as its own module in later releases. The user
interface consists of a Python dictionary collecting the parameters for the calculation and an API to ASEs input/output
geometry handler.19 With ASE, DFTpy can read and write virtually any file format.

DFTpy has been conceived to ease the developments of new methods and to leverage the many modules already
available. Too often junior scientists spend time reinventing common software simply because their platform is not flex-
ible enough to interface easily with other modules. We showcase this with a simple example, using the capability of
ASE to run molecular dynamics with DFTpy as the external engine. We developed a DFTpyCalculator class which is in
the form of an ASE Calculator class, set in the ASE.Atoms class. In Section 3, we present a simple example of MD simu-
lation carried out with DFTpy+ASE.

Two workflow examples are given in Figure 1. In inset (a) of the figure, we show a flowchart describing the main steps
carried out by a density optimization job. Only 3 classes are involved: FunctionalClass, EnergyAndPotentialEvaluator and
Optimization. Figure 1b shows the flowchart of a TD-OFDFT job for which an additional class is required. Namely, Propa-
gator needed for handling the TDDFT propagation step (vide infra). Examples and Jupyter Notebooks related to the den-
sity optimization class and the DFTpy+ASE API are available at DFTpy's manual24 and git repository.25

3 | DETAILS ENABLING COMPUTATIONAL EFFICIENCY

3.1 | New-generation nonlocal KEDFs

New-generation nonlocal KEDFs began with the breakthrough development of the Huang-Carter functional (HC) in
2010.26 For the first time, this functional could reliably approach semiconductors and inhomogeneous systems with a
robust algorithm. Unfortunately, HC was deemed too computationally expensive to become a workhorse for realisti-
cally sized model systems. This prompted a number of additional development by several groups,27–30 including our

(a)
Initialize density

Build energy and potential evaluator

Obtain the search direction vector

Find an acceptable step size

Update the density

Convergence?

Output density

YES

NO

class:
TotalEnergyAndPotential

class:
Optimization

(b)

class:
Optimization

class:
FunctionalClass

Optimize the ground state density

Apply external perturbation

Update Hamiltonian with new density

Solve linear system, and propagate one

time step

t = t
max

?
YES

NO

class:
Propagator

Build the Hamiltonian

Initialize density

and pseudo potential

Exit

Compute dipole moment and current

density

FIGURE 1 Flowcharts for (a) a density optimization job and (b) a TD-OFDFT job (see text for details). On the side of the flowcharts,

we indicate in green boxes the names of the Python classes involved

4 of 16 SHAO ET AL.

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

recent work.8,31 In this section, we will focus on the functionals developed by our group, and specifically LMGP and
LWT family of functionals. However, the techniques and conclusions drawn here are general and encompass other
new-generation functionals, such as HC26 and LDAK.30

In general, the nonlocal KEDFs consist of three terms: Thomas-Fermi (TF),32–34 von Weizsäcker (vW),35 and non-
local term. First, the local TF term is given by

TTF ρ½ �= 3
10

3π2
� �2=3 ð

ρ5=3 rð Þdr: ð6Þ

Second, the semilocal vW term is written as

TvW ρ½ �=
ð ffiffiffiffiffiffiffiffiffi

ρ rð Þ
p

−
1
2
r2

� � ffiffiffiffiffiffiffiffiffi
ρ rð Þ

p
dr: ð7Þ

Finally, the nonlocal term of the KEDFs is given by:

TNL ρ½ �=
ð
ρα rð ÞωNL ρ½ � r,r0ð Þρβ r0ð Þdrdr0, ð8Þ

where α and β are suitable parameters, and ωNL[ρ](r, r0) is a kernel usually assumed to be a function of only |r − r0|
and as such is represented in reciprocal space by a one-dimensional function, ωNL(q). When the Wang–Teter functional
is used,36

ωNL qð Þ=ωWT qð Þ=CWTGNL η qð Þð Þ ð9Þ

where η qð Þ= q
2kF

with kF = 3π2ρð Þ13 is the Fermi wavevector, CWT = 6
25 3π2ð Þ2=3 and GNL(η) is defined in Equation (11).

The WT functional can be improved to satisfy functional integration relations31 by the addition of one correction term
giving rise to the MGP family of functionals. Namely,

ωx,y qð Þ=ωWT qð Þ−xCWT

ð1
0
dt ty

dGNL η q, tð Þð Þ
dt

: ð10Þ

where

GNL ηð Þ= 1
2
+
1−η2

4η
ln

1+ η

1−η

����
����

� �−1

−3η2−1: ð11Þ

MGP is given by (x, y) = (1, 5/6), MGPA by (x, y) = (1/2, 5/6) and MGPG by (x, y) = (1, 5/3). The only difference
between MGP/A/G is the way a kernel is symmetrized. We refer the interested reader to the supplementary information
of Reference 31.

In Reference 8, we developed a technique to generalize WT as well as MGP/A/G functionals to approach localized,
finite systems by invoking spline techniques to obtain kernels no longer dependent only on the average electron density
but instead dependent locally on the full electron density function. The resulting functionals are dubbed LWT, LMGP/
A/G depending on the kernels mentioned in Equations (9) and (10).

The implementation of these new functionals in DFTpy requires the following four steps (s1–s4):

s1. Determine the maximum/minimum value of kF and generate a set of kF values in the kmax
F ,kmin

F

� 	
interval by an

arithmetic or geometric progression. This is an O(N) operation with a very small prefactor.
s2. Evaluate the kernel for each of the kFs using splines either in real or reciprocal space. At the beginning of computa-

tion, the kernel is calculated at some discrete points of η. This calculation is done only once. The kernel evaluation
is an O(N) operation with a potentially large prefactor depending on the type of spline used.

SHAO ET AL. 5 of 16

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

s3. Compute the KEDF potential from Equation (8) with the different kernels. This is an O(NlogN) operation due to
the FFTs needed to evaluate the convolution in Equation (8).

s4. Interpolate the KEDF potential over the values of kF onto kF[ρ(r)] to obtain the final nonlocal KEDF potential and
energy. This is an O(N) operation with a potentially large prefactor depending on the type of spline used.

The timings associated with TNL (we chose LMGP8) compared to TTF + TvW are summarized in Table 1 for Alumi-
num clusters of different sizes ranging from 13 to 12,195 atoms. The structures are generated with ASE adopting a 15 Å
vacuum layer in each direction to ensure the interactions between atoms and their periodic images are negligible.
Inspecting Table 1, we note that the cost of the additional nonlocal functionals is less than 20 times the one of the semi-
local functionals. Thus, it is reasonable to conclude that DFTpy's implementation of new-generation nonlocal KEDFs
opens the door to predictive, ab initio simulations of mesoscale systems (>10 nm).

We should make the following remarks: (a) The results presented in Table 1 are a reference only to isolated systems.
For bulk systems, a much smaller kF grid is needed and the cost is therefore much reduced. Testing shows that the cost
becomes less than half of the one in the table for similarly sized bulk systems. (b) The arithmetic progression used to gen-
erate the η grid can be improved and optimized. For example, we found that using geometric progressions can reduce the
number of needed η points and thus further reduce the cost compared to Table 1. (c) If the values of kmin

F and kmax
F are

kept constant throughout the density optimization, convergence, and the algorithm's stability further improve.

3.2 | Density optimization strategies

Finding a solution to Equation (4) is nontrivial. A stable optimization method is found by recasting Equation (4) in
terms of ψ rð Þ= ffiffiffiffiffiffiffiffiffi

ρ rð Þp
,
37

δE ψ2½ �
δψ rð Þ −2μψ rð Þ=0, ð12Þ

in this way, there is no need to impose the constraint, ρ(r) > 0.
The algorithms employed to carry out the optimization have a long history and in many respects, they determine

the computational efficiency of the entire OFDFT code. In DFTpy, we follow the common prescription. Given an initial
ψ(r), the following steps are repeated until convergence is reached:

1. Obtain the search direction vector pk(r) with an optimization method of choice (e.g., conjugated gradient).
2. Find an acceptable step size λk along the vector pk(r) using a line search strategy.
3. Generate a new ψk + 1(r) from ψk(r), λk, and pk(r).

For Step 1, three main types of optimization methods are implemented in DFTpy: nonlinear conjugate gradient
(CG),38–44 limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)45 and truncated Newton (TN) methods.46 We
tested the TN method to be the fastest method in DFTpy for most systems. However, in many instances (e.g., isolated
systems), the TN method incurs into a high failure rate. Because, in L-BFGS, there is a need to store the last several
updates of ψ and gradient, the memory cost is larger than for other methods. CG, instead, is the most stable among
these methods, with several available options for updating pk. In DFTpy, line search can be performed by the algo-
rithms in SciPy.Optimize.

TABLE 1 Timings for the

evaluation of new-generation KEDFs

(LMGP) with DFTpy for Al clusters of

varying sizes

atoms 13 171 1,099 12,195

TNL 87.14 227.22 759.64 8,010.22

TTF + TvW 6.15 16.54 50.83 463.36

Note: 40 kF values between kmin
F and kmax

F generated with an arithmetic progression is used in all systems. The kernel is
interpolated using the nearest-neighbor method and the linear spline is employed to interpolate the nonlocal KEDF
potential over the kF values.

6 of 16 SHAO ET AL.

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

There are two ways to carry out an optimization: one is direct minimization of the energy functional, and another is
the optimization of the residual [i.e., the result of the evaluation of Equation (12)]. The optimizing function, ψk + 1, can
be updated by ψk + 1 = ψk + λkpk, then normalized to Ne. However, such a scaling scheme is not always stable. An alter-
native approach is to use an orthogonalization scheme prescribing pk to be orthogonal to ψk and normalized to Ne. The
update can take the form47 ψk + 1 = ψkcos(λk) + pksin(λk).

For those systems with inhomogeneous electron densities (such as clusters), convergence is very slow and can be
very time consuming. For this reason, in DFTpy we implemented a multi-step density optimization scheme. In this
scheme, the number of grid points needed to represent the electron density is determined dynamically and typically
increases together with the optimization steps. We start out by carrying out a full density optimization on a coarse grid
and then we interpolate the converged density onto a finer grid leading to substantial savings. For example, if the grid
spacing of the coarse grid is twice larger than the finer grid, the timing is decreased by 1/8. For this scheme, the bigger
the density inhomogeneities in the ground state density, the greater the efficiency improvement. In the next section, we
will present an analysis of the timings and overall computational savings yielded by the new multi-step optimization
method.

3.3 | Leveraging existing techniques

DFTpy leverages fast algorithms, such as FFTs for Fourier transforms,48 and Particle-Mesh Ewald (PME) scheme for
the computation of ionic structure factors.21,49,50 These are the most time-consuming operations when large scale simu-
lations are targeted.51,52

For FFTs, DFTpy encodes two modules: Numpy.fft and pyFFTW.53 While Numpy.fft is a portable FFT implementa-
tion, pyFFTW is perhaps the most efficient FFT under a Python environment that shares the same interface of Numpy.
fft. As FFTs are one of the most time-consuming operations, it is worth to further improve them. For example, Reikna54

seems to offer a better interface to PyCUDA (the Python APIs for CUDA software to run on GPUs) compared to
pyFFTW. Additionally, Google's TensorFlow55 also provides a GPU enabled FFT implementation (via Cuda FFT). Thus,
in future DFTpy releases, we will develop APIs to both Reikna and TensorFlow modules.

Regarding the computation of the ionic structure factor, when a large number of ions is considered in the simula-
tion (e.g., more than 1,000 ions), the vanilla O(N2) method is no longer viable and, instead, the PME method is com-
monly employed. To the best of our knowledge, there are no tested, open-source Python modules for PME. Thus,
DFTpy has an in-house PME implementation, taking advantage of SciPy methods when possible. However, this may
change in future releases if such a PME Python module had to become available.

4 | TIMINGS AND ASSESSMENT OF EFFICIENCY

Throughout this section, the calculations are carried out with the bulk-derived local pseudopotentials56 (BLPS) and
optimal effective local pseudopotentials (OEPP),57 and the LDA xc functional parametrization by Perdew and Zunger.58

Timing tests are performed starting from a face-centered cubic (fcc) Aluminum crystal with a lattice constant of 4.05 Å,
and a kinetic energy cutoff of 600 eV. This is sufficient to converge the total energy to below 1 meV/atom.

4.1 | Optimization of the electron density

Figure 2a shows the total wall times required for the electron density optimization of systems containing up to �10,000
Al atoms using several optimization methods: CG, TN (regular, residual minimization, and scaled, i.e., normalizing the
density to the number of electrons), and L-BFGS. All methods show an approximate linear scaling execution time with
system size. TN performs better than L-BFGS and CG methods. The residual minimization (RM) scheme with TN
method, also presented in the figure, performs comparably to the energy minimization, and the scaling scheme shows
good performance. We conclude that TN provides the most efficient optimization. Thus, TN is adopted for all the fol-
lowing calculations of bulk systems.

The performance of the multi-step density optimization scheme described in 3.2 in comparison to a vanilla den-
sity optimization of Al clusters is shown in Figure 2b, inset. In the calculation, we used the same structures as in

SHAO ET AL. 7 of 16

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Table 1, and for KEDF, we use TTF + TvW. For each step, CG is found to be more stable than TN method for isolated
systems and is used in the density optimization. The results show that the multi-step scheme speeds up the calcula-
tion by a factor of 2, demonstrating the high-efficiency of this multi-step scheme. In particular, a two-step scheme
already brings most of the achievable savings, and a three-step scheme further improves, even though by a much
smaller margin.

4.2 | Linear scalability up to 1 million atoms

OFDFT methods are developed because they hold the promise to be able to describe realistically sized systems. In mate-
rials science, typical system sizes considered by the experiments involve thousands to well over millions of atoms. Will
KSDFT ever be able to approach such systems? While it is hard to make a prediction at this particular point in history
with quantum computing and machine learning spearheading new and potentially disruptive avenues of exploration, it
is clear that current KSDFT algorithms (with exception of divide and conquer methods leveraging a mixture of KSDFT
and OFDFT such as subsystem DFT59) and software are far from being able to approach million-atom system sizes.
OFDFT is developed to precisely fill this gap.3,50

DFTpy enters this playing field with an essentially single-core implementation (possibly enhanced by multi-
threading from OpenMP implementations of some underlying modules which are, however, not used in this work). We
stress here that a single core is perhaps all that is needed when system sizes of such dimensions are approached. This is
because the complexity of sampling becomes a true computational bottleneck. Several thousands or even millions of
structures need to be sampled in large-scale simulations, which make farming-type parallelization more efficient than
single executions of parallel codes.

To our knowledge, the largest system size ever approached by single-processor OFDFT software is 13,500 atoms.51

At the same time, the largest system ever approached by parallel OFDFT codes reached �4 million atoms using 2,048
processors.52 To test the computational usefulness and efficiency of DFTpy, we perform a density optimization on the
fcc Al supercell up to 1,000,188 atoms with a single processor. The total time and time-per-call for the total potential as
a function of the number of atoms are presented in Figure 3. From the figure, we can see that DFTpy still shows
approximately linear scaling behavior with the number of atoms even for the large systems considered. The total time
for simulating the �1-million atom system on a single core is only �32 hr and can be further reduced to �20 hr by
using the slightly lower cutoff of 500 eV which can still converge the total energy to within 1 meV/atom. We also notice
that the FFT only accounts for �25% of the total time, and surprisingly the time cost of TTF and LDA exchange-
correlation are comparable to the FFT.

Thus, even though Python brings many important qualities to the developed software, it also poses a few headaches.
The example just mentioned shows that operations as simple as the power (i.e., a = bc, involved in the evaluation of

(a)

0 2×103 4×103 6×103 8×103 1×104

0

50

100

150

200

250

300

350
W

al
l

ti
m

e
(s

)

Atoms

TN

L-BFGS

CG

TN (RM)

TN (Scale)

(b)

101 102 103 104

101

102

103

W
al

l
ti

m
e

(s
)

Atoms

Normal

Multi-step (2)

Multi-step (3)

FIGURE 2 Timings (wall time) for density optimizations carried out with different optimization methods. (a) Comparing optimizers on

bulk Al supercells. (b) Comparing two- and three-step optimization to a vanilla density optimization for Al clusters

8 of 16 SHAO ET AL.

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

LDA functionals such as TTF and Dirac's exchange) can be inefficient when NumPy is used. Even though this comes at
a linear cost, the prefactor is substantial, making the evaluation of the Thomas–Fermi functional much too expensive
as seen in the figure. This issue will be tackled in future releases of DFTpy, for example by employing Pythran60 or low-
level languages for such operations.

4.3 | DFTpy+ASE: Dynamics of liquid aluminum

Molecular dynamics (MD) is a widely used simulation technique in materials science and chemistry, useful to study
structural and dynamic properties of materials. It is quite straightforward to develop an API that combines DFTpy and
ASE to perform MD simulations.

To showcase this API, we target a known success story for OFDFT. That is the simulation of structure and dynamics
of liquid metals, and particularly liquid Al. In Table 2, we first show that DFTpy with the Wang–Teter (WT) functional is
capable of predicting the correct equation of state for bulk Al. The equilibrium bulk structure is found numerically as well
as via optimization (again, carried out via DFTpy+ASE) which agree with the fitted results from total energy values.

We then proceeded to carry out MD simulations in the canonical ensemble (i.e., constant number of particles,
volume and temperature: NVT) for liquid Al at the experimental density 2.35 g/cm3 and the temperature of
1,023 K.61 We first consider a small system size of 108 atoms and then we also tackle a 1,372 atom system. The
time step used is 2 fs, and a Langevin thermostat62 is used. Except a uniform density as the initial guess density in
the first step, the initial density is given by optimization density of the previous step in the following steps, which
further reduces the wall time. Figure 4 shows that our simulation results are in very good agreement with experi-
mental data. DFTpy simulates the 108 atoms for 20,000 steps in only 37,368 s (�10 hr). To study finite-size effects
on the g(r), we also carried out a simulation with a larger cell containing 1,372 atoms. The results in the figure
show that finite-size effects are negligible for this system. Here, g(r) were averaged over 10,000 steps after
equilibration.

2×105 4×105 6×105 8×105 1×106
0

5

10

15

20

25

30

35

W
al

l
ti

m
e

(h
)

Atoms

Total

Others

XC

TF

FFT

FIGURE 3 Timings (wall time) for density optimization on fcc

aluminum for systems up to 1 million atoms with the truncated

Newton method

TABLE 2 Bulk properties of fcc

Al calculated by KSDFT and OFDFT

methods

V0 E0 B0

KSDFT 15.644 −57.951 82.94

OFDFT 15.819 −57.934 84.97

Relaxation 15.821 −57.934 –

Note: V0 is the equilibrium volume (Å3/atom), E0 is the total energy (eV/atom),
and B0 is the bulk modulus (GPa). “Relaxation” refers to values obtained by
OFDFT after a structure relaxation using DFTpy+ASE.

SHAO ET AL. 9 of 16

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

5 | EASE OF IMPLEMENTATION OF NEW METHODS

5.1 | Time-dependent OFDFT

The hydrodynamic approach to time-dependent DFT (TD-DFT) has shown great promise for understanding
plasmonics,17,63,64 and the response of bulk metals,65 metal surfaces,66,67 and metal clusters.15,68,69 Its applications, however,
have been limited to model systems, such as jellium,67 jellium spheres,15 and other models.64 Even though these models are
useful, as they provide a qualitative picture of the physics, a predictive and quantitative model can only be achieved when the
atomistic details of the systems are taken into account. This is exactly our aim in this new implementation in DFTpy. Thus,
in this section, we present an implementation of atomistic hydrodynamic TD-DFT which we call TD-OFDFT, hereafter.

The theory follows closely OFDFT,65,70 and introduces a “collective orbital” ψ(r), where |ψ(r)|2 = ρ(r). We then
solve the associated Schrödinger-like equation. Namely,

Ĥψ rð Þ= μψ rð Þ, ð13Þ

where

Ĥ = −
1
2
r2 +

δTPauli
S

δρ rð Þ + vS rð Þ: ð14Þ

The Laplacian term comes from the minimization of the von Weizsäcker (vW) term, TvW
S . TPauli

S =TS−TvW
S is the

remaining part of the noninteracting kinetic energy and is included in the TD-DFT effective potential.
A similar approach can be formulated for the time-dependent extension68,71 requiring the current density j(r,

t) = ρ(r, t)rS(r, t), where S(r, t) is a scalar velocity field. Thus, we write the time-dependent collective orbital in the
form of ψ r, tð Þ� ffiffiffiffiffiffiffiffiffiffiffiffi

ρ r, tð Þp
eiS r,tð Þ, and then solve a time-dependent Schrödinger-like equation,

i
∂ψ r, tð Þ

∂t
= Ĥψ r, tð Þ: ð15Þ

Following Equation (14), the Hamiltonian in the above equation has the form,

Ĥ = −
1
2
r2 +

δTPauli
S

δρ r, tð Þ + vS r, tð Þ, ð16Þ

which we implement in the adiabatic LDA (ALDA) approximation.

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0
g
(r

)

r (Å)

Experiment

108 atoms

1372 atoms

FIGURE 4 Pair distribution functions g(r) for liquid Al at

experimental conditions compared to X-ray diffraction data61

10 of 16 SHAO ET AL.

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

This formalism can be exploited in several flavors: real-time propagations,65,68 and perturbatively.72 In this work,
we choose the former, as described in the following section. We remark recent efforts to achieve an exact factorization
of the wavefunction into marginal and conditional terms73,74 leading to a one-electron-like equation similar to
Equation (15).

5.1.1 | Implementation of real-time TD-OFDFT

We implemented a Crank–Nicolson propagator with a predictor–corrector to any desired order. The relevant equation
to solve for this implicit propagator is,75

1− i
dt
2
Ĥ

� �
ψ t+dtð Þ= 1+ i

dt
2
Ĥ

� �
ψ tð Þ: ð17Þ

The real-time TD-OFDFT simulation follows the workflow:

1. Optimize the ground state density.
2. Build the Hamiltonian in Equation (14).
3. Apply an external perturbation to displace the system from the ground electronic state (vide infra).
4. Calculate the new potential with the density ρ(ti) and update the Hamiltonian with the new potential.
5. Solve the linear system in Equation (17), and propagate 1-time step from ti to ti + 1 (including the predictor–corrector

step).
6. Compute dipole moment and current density.
7. Loop steps 4–6 until the total propagation time is reached.

A simple Jupyter notebook encoding the TD-OFDFT scheme is available in the notebooks section of the GitLab
repository,25 as well as in the tutorials tab of DFTpy's manual.24

5.1.2 | Optical spectra of Mg8 and Mg50 clusters

We choose Mg metal clusters as the systems of interest. The system is optimized to its ground state density ρ0(r). At
t = 0, we introduce a laser kick with strength k in the x-direction by setting the collective phase, S(r, t = 0) = −ikx,

ψ r, t = 0ð Þ=ψ rð Þe− ikx , ð18Þ

where ψ rð Þ= ffiffiffiffiffiffiffiffiffiffiffi
ρ0 rð Þp

. We then propagate the system in real-time and obtain the time-dependent dipole moment
change

δμ tð Þ=
ð
r ρ r, tð Þ−ρ0 rð Þð Þdr: ð19Þ

The oscillator strength is calculated using the following equation:

σ ωð Þ=ωIm δ~μ ωð Þ½ �: ð20Þ

For simplicity, we employ the Thomas–Fermi–von Weizsäcker functional,35 which was shown to perform well for
finite, isolated systems such as the metal clusters considered in this work.76 We use the OEPP local pseudopotentials57

and the Perdew–Zunger LDA xc functional.58 A kinetic energy cutoff of 400 and 850 eV was used for Mg8 and Mg50,
respectively. We indicate by TD-KSDFT the TD-DFT calculations carried out with the exact noninteracting kinetic
energy (i.e., Kohn–Sham) which are performed with the embedded Quantum Espresso (eQE) code.77 In follow-up work,

SHAO ET AL. 11 of 16

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

we will apply the TD-OFDFT technique to a wider class of clusters (metal and semiconducting) where we will be able
to determine the ranges of applicability of TD-OFDFT.

Metal clusters have been a common application of time-dependent Thomas–Fermi methods, including hydrody-
namic OFDFT.70 The general consensus is that the larger the metal cluster, the closer the agreement with KSDFT.
Banerjee and Harbola15 showed that when OFDFT is applied to jellium spheres corresponding to cluster sizes of
100 atoms, the deviation between OFDFT and KSDFT in terms of the value of the static dipole polarizability goes below
20%. For cluster sizes corresponding to 1,000 atoms, the deviation goes below 2%.

Similarly, Figures 5 and 6 show that our TD-OFDFT calculations yield spectra for Mg8 and Mg50 that are in fair
agreement with TD-KSDFT.

The agreement, however, is stronger in the Mg50 system where the width and shape of the spectral envelope is
better reproduced. The reason for such an agreement likely is the fact that Mg50 can develop a uniform electron gas-like
electronic structure in its core, a type of structure well characterized by a single orbital. Even though the agreement for
the spectra of Mg clusters are only qualitative, we expect TD-OFDFT to perform similarly or better for other metal clus-
ters (e.g., Na clusters).15,68

5.1.3 | Comparison of KS-DFT and OFDFT orbitals

An interesting question is whether the collective orbitals recovered by the solution of Equation (13) resemble the KS
orbitals. In principle, the collection of occupied and virtual KS orbitals form a complete basis, and so do the OFDFT

2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

O
sc

il
la

ti
o
n

st
re

n
g
th

(a
.u

.)

Energy (eV)

KSDFT

OFDFT

FIGURE 5 Comparison of optical spectra obtained with TD-

OFDFT and TD-KSDFT for Mg8. A view of the total density is given

in the inset

2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

O
sc

il
la

ti
o
n
 s

tr
en

g
th

 (
a.

u
.)

Energy (eV)

 KSDFT

 OFDFT

FIGURE 6 Comparison of optical spectra computed with TD-

OFDFT and TD-KSDFT for Mg50. A view of the total density is given

in the inset

12 of 16 SHAO ET AL.

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

collective orbitals. Thus, if we had to compare a large number of KS and collective orbitals, we would find that they
span the exact same Hilbert space. For these reasons, we consider the Mg8 system and limit the comparison to the low-
lying orbitals. Specifically, we compare orbitals within 5.0 eV from the Fermi energy, which corresponds to the first
peak in the optical spectra. These comprise 17 OFDFT collective orbitals (1 occupied and 16 virtual) and 32 KS orbitals
(8 occupied and 24 virtual). Three KSDFT and OFDFT virtuals are displayed in Figure 7.

A direct comparison of OF and KS orbitals cannot be done visually. Therefore, we set up a rectangular overlap
matrix, Sij = ψKS

i jψOF
j

D E
and compute its singular value decomposition. The distribution of the singular values are col-

lected in Table 3.
If occupied and virtuals are included in the singular value decomposition, the OF orbitals can be essentially exactly

represented as a linear combination of the KS orbitals (the majority of the singular values are close to 1). However, if
only virtual orbitals within a 5.0 eV energy window from the Fermi energy are considered, the OF orbitals can only be
partially decomposed into KS virtual orbitals. Thus, the comparison shows that OFDFT and KSDFT orbitals are similar
if occupied and virtuals are compared. The virtual spaces, however, are only partially similar.

6 | CONCLUSIONS AND FUTURE DIRECTIONS

The Python revolution in computational electronic structure theory began almost two decades ago. It initially involved
the emergence of wrappers for traditional software.19,78,79 Initial attempts to output full-fledged quantum chemistry
implementations came as early as 2004.80 A defining moment was the 2015 release of PySCF22 which featured an essen-
tially complete quantum chemistry code (including advanced post-HF methods) with a software that leveraged C rou-
tines for Gaussian integrals and Python for essentially anything else.

FIGURE 7 Mg8 KSDFT virtual orbitals: LUMO, LUMO+2,

and LUMO+6 (above). OFDFT “collective” virtual orbitals: LUMO,

LUMO+3, and LUMO+6 (below)

TABLE 3 Distribution of the

singular values of the overlap matrix,

Sij, between KS and OF-DFT orbitals

for Mg8

Number of singular values

Range Occ. + Virt. Virt. Only

0.9–1.0 14 7

0.8–0.9 2 1

0.7–0.8 1 1

0.6–0.7 1

0.5–0.6 1

0.4–0.5 1

0.3–0.4 4

Note: A selection of virtuals can be inspected in Figure 7.

SHAO ET AL. 13 of 16

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

With DFTpy, we merely follow this revolution, by developing a Python implementation for OFDFT simulations.
The object-oriented nature of DFTpy provides an almost barrierless entry to advanced coding. We give an example of
this by showcasing a new time-dependent OFDFT implementation and associated applications to the optical spectra of
Mg clusters. In addition to the clear advantages compared to other, more traditional OFDFT codes based on low-level
programming languages, DFTpy implements new-generation nonlocal KEDFs with density-dependent kernels in a
fairly efficient way. An analysis of timings shows that the cost associated with the new nonlocal functionals is less than
20 times that of semilocal functionals when isolated systems are approached (such as surfaces or clusters) and less than
seven times when bulk systems are considered. This is an important advance, making such functionals feasible for large
scale simulations.

DFTpy classes and structure are general and could support a KS-DFT implementation and APIs to other
Python codebases, such as PySCF, GPAW, and PSI4. In doing so, in the near future, we will implement a set of
classes that will handle embedding schemes (from many-body expansions to density and quantum embedding). In
this way, we will be able to seamlessly combine portions of a mesoscopic system computed at the OFDFT level
and others at the KS-DFT level pushing the boundaries of time and length scales that can be approached by
ab initio methods.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grants No. CHE-1553993 and
ACI-1931473. The TD-OFDFT development is supported by the US Department of Energy, Office of Basic Energy Sci-
ences, under Award Number DE-SC0018343. The authors acknowledge the Office of Advanced Research Computing
(OARC) at Rutgers, The State University of New Jersey for providing access to the Amarel cluster and associated
research computing resources that have contributed to the results reported here (URL: http://oarc.rutgers.edu).

CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS
Xuecheng Shao: Conceptualization; data curation; software; supervision; writing-original draft. Kaili Jiang: Investiga-
tion; software; writing-original draft. Wenhui Mi: Conceptualization; investigation; writing-original draft. Alessandro
Genova: Conceptualization; software. Michele Pavanello: Conceptualization; project administration; software; super-
vision; writing-original draft.

ORCID
Wenhui Mi https://orcid.org/0000-0002-1612-5292
Michele Pavanello https://orcid.org/0000-0001-8294-7481

RELATED WIREs ARTICLE
The Chronus Quantum software package

REFERENCES
1. Witt WC, Beatriz G, Dieterich JM, Carter EA. Orbital-free density functional theory for materials research. J Mater Res. 2018;33:777–795.
2. Chen M, Xia J, Huang C, et al. Introducing profess 3.0: An advanced program for orbital-free density functional theory molecular

dynamics simulations. Comput Phys Commun. 2015;190:228–230.
3. Shao X, Xu Q, Wang S, Lv J, Wang Y, Ma Y. Large-scale ab initio simulations for periodic system. Comput Phys Commun. 2018;233:

78–83.
4. Gavini V, Knap J, Bhattacharya K, Ortiz M. Non-periodic finite-element formulation of orbital-free density functional theory. J Mech

Phys Solids. 2007;55:669–696.
5. Chen M, Jiang X-W, Zhuang H, Wang L-W, Carter EA. Petascale orbital-free density functional theory enabled by small-box algorithms.

J Chem Theory Comput. 2016;12:2950–2963.
6. Xia J, Carter EA. Density-decomposed orbital-free density functional theory for covalently bonded molecules and materials. Phys Rev B.

2012;86:235109.
7. Xia J, Huang C, Shin I, Carter EA. Can orbital-free density functional theory simulate molecules? J Chem Phys. 2012;136:084102.
8. Mi W, Pavanello M. Orbital-free dft correctly models quantum dots when asymptotics, nonlocality and nonhomogeneity are accounted

for. Phys Rev B. 2019;100:041105(R).

14 of 16 SHAO ET AL.

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://oarc.rutgers.edu
https://orcid.org/0000-0002-1612-5292
https://orcid.org/0000-0002-1612-5292
https://orcid.org/0000-0001-8294-7481
https://orcid.org/0000-0001-8294-7481
https://doi.org/10.1002/wcms.1436

9. Xu Q, Wang Y, Ma Y. Nonlocal kinetic energy density functional via line integrals and its application to orbital-free density functional
theory. Phys Rev B. 2019;100:205132.

10. Lehtomäki J, Makkonen I, Caro MA, Harju A, Lopez-Acevedo O. Orbital-free density functional theory implementation with the projec-
tor augmented-wave method. J Chem Phys. 2014;141:234102.

11. Karasiev VV, Sjostrom T, Trickey S. Finite-temperature orbital-free DFT molecular dynamics: Coupling profess and quantum espresso.
Comput Phys Commun. 2014;185:3240–3249.

12. Mi W, Shao X, Su C, et al. Atlas: A real-space finite-difference implementation of orbital-free density functional theory. Comput Phys
Commun. 2016;200:87–95.

13. Genova A. Pbcpy: A python3 package providing some useful abstractions to deal with molecules and materials under periodic boundary
conditions (pbc). 2018.

14. Lehtola S, Steigemann C, Oliveira MJ, Marques MA. Recent developments in libxc—A comprehensive library of functionals for density
functional theory. SoftwareX. 2018;7:1–5.

15. Banerjee A, Harbola MK. Hydrodynamic approach to time-dependent density functional theory: Response properties of metal clusters.
J Chem Phys. 2000;113:5614–5623.

16. Tokatly I, Pankratov O. Hydrodynamic theory of an electron gas. Phys Rev B. 1999;60:15550–15553.
17. Banerjee A, Harbola MK. Hydrodynamical approach to collective oscillations in metal clusters. Phys Lett A. 2008;372:2881–2886.
18. Zaremba E, Tso HC. Thomas-fermi-dirac-von weizsäcker hydrodynamics in parabolic wells. Phys Rev B. 1994;49:8147–8162.
19. Larsen AH, Mortensen JJ, Blomqvist J, et al. The atomic simulation environment—A python library for working with atoms. J Phys Con-

dens Matter. 2017;29:273002.
20. Darden T, York D, Pedersen L. Particle mesh ewald: An n�log(n) method for ewald sums in large systems. J Chem Phys. 1993;98:

10089–10092.
21. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh ewald method. J Chem Phys. 1995;103:

8577–8593.
22. Sun Q, Berkelbach TC, Blunt NS, et al. Pyscf: The python-based simulations of chemistry framework. WIREs Comput Mol Sci. 2018;8:

e1340.
23. Smith DGA, Burns LA, Sirianni DA, et al. Psi4numpy: An interactive quantum chemistry programming environment for reference

implementations and rapid development. J Chem Theory Comput. 2018;14:3504–3511.
24. Dftpy Manual. 2020. Available from: https://dftpy.rutgers.edu
25. Dftpy. 2020. Available from: https://gitlab.com/pavanello-research-group/dftpy
26. Huang C, Carter EA. Nonlocal orbital-free kinetic energy density functional for semiconductors. Phys Rev B. 2010;81:045206.
27. Constantin LA, Fabiano E, Sala FD. Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free

density functional theory. Phys Rev B. 2018;97:205137.
28. Luo K, Karasiev VV, Trickey S. A simple generalized gradient approximation for the noninteracting kinetic energy density functional.

Phys Rev B. 2018;98:041111.
29. Constantin LA, Fabiano E, Śmiga S, Della Sala F. Jellium-with-gap model applied to semilocal kinetic functionals. Phys Rev B. 2017;95:

115153.
30. Xu Q, Lv J, Wang Y, Ma Y. Nonlocal kinetic energy density functionals for isolated systems obtained via local density approximation

kernels. Phys Rev B. 2020;101:045110.
31. Mi W, Genova A, Pavanello M. Nonlocal kinetic energy functionals by functional integration. J Chem Phys. 2018;148:184107.
32. Thomas LH. The calculation of atomic fields. Mathematical Proceedings of the Cambridge philosophical Society. Volume 23. Cambridge,

MA: Cambridge University Press, 1927; p. 542–548.
33. Fermi E. Statistical method to determine some properties of atoms. Rend Accad Naz Lincei. 1927;6:5.
34. Fermi E. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des peri-

odischen systems der elemente. Z Phys. 1928;48:73–79.
35. von Weizsäcker CF. Zur Theorie der Kernmassen. Z Phys. 1935;96:431–458.
36. Wang L-W, Teter MP. Kinetic-energy functional of the electron density. Phys Rev B. 1992;45:13196–13220.
37. Wang YA, Govind N, Carter EA. Orbital-free kinetic-energy density functionals with a density-dependent kernel. Phys Rev B. 1999;60:

16350–16358.
38. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. Vol 49. Washington, DC: NBS, 1952.
39. Fletcher R, Reeves CM. Function minimization by conjugate gradients. Comput J. 1964;7:149–154.
40. Polak E, Ribiere G. Note sur la convergence de méthodes de directions conjuguées. ESAIM: Math Model Num Anal. 1969;3:35–43.
41. Polyak BT. The conjugate gradient method in extremal problems. USSR Comput Math Math Phys. 1969;9:94–112.
42. Fletcher R. Practical methods of optimization: Vol. 1. Unconstrained optimization. Hoboken, NJ: John Wiley & Sons, 1980.
43. Liu Y, Storey C. Efficient generalized conjugate gradient algorithms, part 1: Theory. J Optim Theory Appl. 1991;69:129–137.
44. Dai Y-H, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J Optim. 1999;10:177–182.
45. Liu DC, Nocedal J. On the limited memory bfgs method for large scale optimization. Math Program. 1989;45:503–528.
46. Nocedal J, Wright S. Numerical optimization. Berlin: Springer, 2006.
47. Jiang H, Yang W. Conjugate-gradient optimization method for orbital-free density functional calculations. J Chem Phys. 2004;121:

2030–2036.

SHAO ET AL. 15 of 16

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://dftpy.rutgers.edu
https://gitlab.com/pavanello-research-group/dftpy

48. Frigo M, Johnson SG. The design and implementation of FFTW3. Proc IEEE. 2005;93:216–231.
49. Choly N, Kaxiras E. Fast method for force computations in electronic structure calculations. Phys Rev B. 2003;67:155101.
50. Hung L, Carter EA. Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics.

Chem Phys Lett. 2009;475:163–170.
51. Ho GS, Lignères VL, Carter EA. Introducing profess: A new program for orbital-free density functional theory calculations. Comput Phys

Commun. 2008;179:839–854.
52. Shao X, Mi W, Xu Q, Wang Y, Ma Y. O (n log n) scaling method to evaluate the ion–electron potential of crystalline solids. J Chem Phys.

2016;145:184110.
53. Gomersall H. pyfftw. 2016.
54. Opanchuk B. Reikna, a pure python gpgpu library. Melbourne: Swinburne University of Technology, 2019.
55. Abadi M, Barham P, Chen J, et al. Tensorflow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 16). Savannah, GA: USENIX Association, 2016; p. 265–283.
56. Huang C, Carter EA. Transferable local pseudopotentials for magnesium, aluminum and silicon. Phys Chem Chem Phys. 2008;10:

7109–7120.
57. Mi W, Zhang S, Wang Y, Ma Y, Miao M. First-principle optimal local pseudopotentials construction via optimized effective potential

method. J Chem Phys. 2016;144:134108.
58. Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B. 1981;23:

5048–5079.
59. Krishtal A, Sinha D, Genova A, Pavanello M. Subsystem density-functional theory as an effective tool for modeling ground and excited

states, their dynamics and many-body interactions. J Phys Condens Matter. 2015;27:183202.
60. Guelton S, Brunet P, Amini M, Merlini A, Corbillon X, Raynaud A. Pythran: Enabling static optimization of scientific python programs.

Comput Sci Discov. 2015;8:014001.
61. Waseda Y. The structure of non-crystalline materials: Liquids and amorphous solids. New York: McGraw-Hill, 1980.
62. Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press, 2017.
63. Domps A, Suraud E, Reinhard P-G. Geometrical and quantal fragmentation of optical response in. Eur Phys J D Atom Mol Opt Plasma

Phys. 1998;2:191–194.
64. Ciracì C, Sala FD. Quantum hydrodynamic theory for plasmonics: Impact of the electron density tail. Phys Rev B. 2016;93:205405.
65. White TG, Richardson S, Crowley BJB, Pattison LK, Harris JWO, Gregori G. Orbital-free density-functional theory simulations of the

dynamic structure factor of warm dense aluminum. Phys Rev Lett. 2013;111:175002.
66. Bennett AJ. Influence of the electron charge distribution on surface-plasmon dispersion. Phys Rev B. 1970;1:203–207.
67. Liebsch A. Electronic excitations at metal surfaces. New York, NY: Springer US, 1997.
68. Domps A, Reinhard P-G, Suraud E. Time-dependent Thomas-fermi approach for electron dynamics in metal clusters. Phys Rev Lett.

1998;80:5520–5523.
69. Calvayrac F, Reinhard P-G, Suraud E, Ullrich C. Nonlinear electron dynamics in metal clusters. Phys Rep. 2000;337:493–578.
70. Harbola MK. Differential virial theorem and quantum fluid dynamics. Phys Rev A. 1998;58:1779–1782.
71. Giannoni M, Vautherin D, Veneroni M, Brink D. Variational derivation of nuclear hydrodynamics. Phys Lett B. 1976;63:8–10.
72. Banerjee A, Harbola MK. Calculation of van der waals coefficients in hydrodynamic approach to time-dependent density functional the-

ory. J Chem Phys. 2002;117:7845–7851.
73. Abedi A, Maitra NT, Gross EKU. Exact factorization of the time-dependent electron-nuclear wave function. Phys Rev Lett. 2010;105:

123002. https://doi.org/10.1103/physrevlett.105.123002
74. Schild A, Gross E. Exact single-electron approach to the dynamics of molecules in strong laser fields. Phys Rev Lett. 2017;118:163202.

https://doi.org/10.1103/physrevlett.118.163202
75. Castro A, Marques MAL, Rubio A. Propagators for the time-dependent Kohn-Sham equations. J Chem Phys. 2004;121:3425–3433.
76. Chan GK-L, Cohen AJ, Handy NC. Thomas–Fermi–Dirac–von Weizsäcker models in finite systems. J Chem Phys. 2001;114:631–638.
77. Genova A, Ceresoli D, Krishtal A, Andreussi O, DiStasio RA Jr, Pavanello M. Eqe: An open-source density functional embedding theory

code for the condensed phase. Int J Quantum Chem. 2017;117:e25401.
78. Ong SP, Richards WD, Jain A, et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis.

Comput Mater Sci. 2013;68:314–319.
79. Jacob CR, Beyhan SM, Bulo RE, et al. PyADF—a scripting framework for multiscale quantum chemistry. J Comput Chem. 2011;32:

2328–2338.
80. Muller RP, PyQuante: Python Quantum Chemistry. 2004.

How to cite this article: Shao X, Jiang K, Mi W, Genova A, Pavanello M. DFTpy: An efficient and object-
oriented platform for orbital-free DFT simulations. WIREs Comput Mol Sci. 2021;11:e1482. https://doi.org/10.
1002/wcms.1482

16 of 16 SHAO ET AL.

 17590884, 2021, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1482 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1103/physrevlett.105.123002
https://doi.org/10.1103/physrevlett.118.163202
https://doi.org/10.1002/wcms.1482
https://doi.org/10.1002/wcms.1482

	DFTpy: An efficient and object-oriented platform for orbital-free DFT simulations
	1 INTRODUCTION
	1.1 Theoretical background
	1.2 OFDFT software background

	2 CLASSES AND SOFTWARE WORKFLOW
	2.1 DFTpy classes
	2.2 Other classes and APIs

	3 DETAILS ENABLING COMPUTATIONAL EFFICIENCY
	3.1 New-generation nonlocal KEDFs
	3.2 Density optimization strategies
	3.3 Leveraging existing techniques

	4 TIMINGS AND ASSESSMENT OF EFFICIENCY
	4.1 Optimization of the electron density
	4.2 Linear scalability up to 1million atoms
	4.3 DFTpy+ASE: Dynamics of liquid aluminum

	5 EASE OF IMPLEMENTATION OF NEW METHODS
	5.1 Time-dependent OFDFT
	5.1.1 Implementation of real-time TD-OFDFT
	5.1.2 Optical spectra of Mg8 and Mg50 clusters
	5.1.3 Comparison of KS-DFT and OFDFT orbitals

	6 CONCLUSIONS AND FUTURE DIRECTIONS
	ACKNOWLEDGMENTS
	 CONFLICT OF INTEREST
	 AUTHOR CONTRIBUTIONS
	REFERENCES

