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ABSTRACT: The key feature of nonlocal kinetic energy functionals is their ability
to reduce to the Thomas-Fermi functional in the regions of high density and to the
von Weizsac̈ker functional in the region of low-density/high reduced density
gradient. This behavior is crucial when these functionals are employed in subsystem
DFT simulations to approximate the nonadditive kinetic energy. We propose a
GGA nonadditive kinetic energy functional which mimics the good behavior of
nonlocal functionals, retaining the computational complexity of typical semilocal
functionals. Crucially, this functional depends on the inter-subsystem density
overlap. The new functional reproduces Kohn−Sham DFT and benchmark
CCSD(T) interaction energies of weakly interacting dimers in the S22-5 and S66
test sets with a mean absolute deviation well below 1 kcal/mol.

1. INTRODUCTION

Subsystem DFT (sDFT) is a divide-and-conquer method that
extends the applicability of conventional DFT to system sizes
larger than those typically accessible.1−4 The main idea behind
sDFT is to split the noninteracting kinetic energy into subsystem
additive and nonadditive parts.5−10 Namely
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where {ρI(r)} is the set of subsystem electron densities. In doing
so, orthogonalization of wavefunctions belonging to different
subsystems is completely bypassed,11 and a formally linear-
scaling behavior can be attained (or quasi-linear due to the need
to solve for Coulomb interactions which scales like

N N( log( )).12−17 Naturally, for the method to be accurate,
the additive terms are treated exactly (i.e., the kinetic energy
internal to the subsystems is evaluated with the subsystem
orbitals), while to improve efficiency, the nonadditive functional
is defined simply through eq 1 and is evaluated with pure density
functionals. Clearly, the accuracy of the method is directly
related to the quality of the pure functionals employed as
nonadditive functionals.18−22

The common strategy in sDFT is to borrow already available
pure density functionals for the noninteracting kinetic energy
and use them in eq 1 to obtain approximations for the
nonadditive kinetic energy functional (NAKE). LDA, GGA, and
nonlocal NAKEs have been proposed by this strategy. GGA
NAKEs already provide a semiquantitative description of inter-
subsystem interactions (molecule−molecule and molecule−
surface).22−24 However, only recently nonlocal functionals (i.e.,

functionals that depend on the density evaluated simultaneously
in two or more separate points in space) have been employed as
a NAKE with great success.25−27 Such GGA nonadditive
functionals as revAPBEK and LC94 are expected to perform
with an accuracy averaging slightly above 1 kcal/mol; however,
the shape of the energy curves are incorrectly too attractive (see
refs 25, 24, and vide inf ra). When these functionals are corrected
by a fitted repulsive function (in the same spirit as the repulsive
part of a Grimme’s Dn correction), the shape of the energy
curves involved is significantly improved.24 Nonlocal functionals
also make very good NAKEs and further improve the
performance of GGA NAKEs in sDFT simulations to a mean
absolute deviation (MAD) below 1 kcal/mol for the S22-5 set,
with particularly strong improvement for strained structures and
correctly reproducing the shape of the energy curves.25

The question we address in this work is can we achieve an
accuracy similar to the one of nonlocal functionals with a GGA
functional? Since the early work on GGA NAKEs,28 it became
clear that in order to satisfy the non-negativity condition,Ts

nadd≥
0, it is important to use the Thomas-Fermi functional, TTF[ρ] =
∫ τTF(ρ(r))dr = ∫ ρ5/3(r)dr, for low values of the reduced
gradient, s(r) = |∇ρ(r)|/(2ρ(r)kF(r)), where kF(r) =
(3π2ρ(r))1/3 is the local Fermi wavevector. To easily achieve
this, an enhancement factor, Fs, is introduced. Namely
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r r rT F s( ( )) ( ( ))ds
GGA

TF s∫ρ τ ρ[ ] =
(2)

Such a strategy is commonplace. It is found in, for example,
the revAPBEK29 kinetic energy functional and many
others.28,30,31 They share the following approximate form of
the enhancement factor borrowed from the PBE exchange
functional32

F s
s

s
( ) 1

1s
approx

2

2
κ= +
+ κ

μ (3)

Laricchia et al.29 found that revAPBEK outperformed all other
GGA functionals. Thus, in this work, we use revAPBEK as a
reference for the performance of GGA functionals.
Nonlocal functionals achieve the goal of functional positivity

by providing the following ansatz for the kinetic energy
functional33,34

T T T Ts TF vW NLρ ρ ρ ρ[ ] = [ ] + [ ] + [ ] (4)

where TvW is the von Weizsac̈ker kinetic energy (which violates
positivity35) and TNL is the nonlocal contribution. TNL is
designed to cancel out TTF in the tail of atoms where TvW is
expected to be accurate and to cancel out TvW in the regions of
the high-density/low-density gradient where TTF is expected to
be accurate. Thus, it is not a surprise that nonlocal nonadditive
functionals are the currently best-performing NAKEs.25

2. SMP FUNCTIONAL

Cognizant of the analysis above, we set out to develop a NAKE
that takes inspiration from the success of nonlocal functionals
while targeting the computational complexity of GGA func-
tionals. We term the new functional SMP. SMP’s “parent”
kinetic energy functional features an energy density that is a mix
of two functionals

r r
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[ ] = [ ]

= [ + −
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where τ and τGGA are the total kinetic energy density and the one
of a GGA functional, TGGA[ρ] (we use revAPBEK in this work),
respectively. W is a switching function. Mixing functionals is a
commonly adopted technique for improving density functionals
of either the kinetic energy or the exchange−correlation
(xc).36−48

The corresponding kinetic potential is
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The switching function is defined as a hyperbolic function

r rW
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e
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where ρ* is a constant parameter. TheW(ρ(r)) function is in the
[0−1] range. For the high-density regions (ρ(r) > ρ*),W(ρ(r))
tends to 1, which means that the TF functional contributes the
most. Conversely, for the low-density regions (ρ(r) ≪ ρ*),
W(ρ(r)) tends to 0 and the GGA functional contributes the
most.
So far, the above equations are appropriate for an

approximation for the noninteracting kinetic energy. To obtain
a NAKE, we can use the decomposable NAKE formula eq 1. For
SMP, the ρ* parameter is crucial and it is chosen following the
steps below:

1 Compute the ratio between ρI(r) and ρ(r) − ρI(r).
Namely

r
r

r r
S ( )

( )

( ) ( )I
I

I

ρ
ρ ρ

=
− (10)

2 Special points rh are those where SI(rh) = 1.
3 ρ* is given by the following expression

r rmax ( ) ( )
r I h h

h

ρ ρ ρ* = { + }
(11)

The parameter ρ* needs no adjustment during a single-point
energy calculation and is unique to each subsystem. The total
kinetic energy functional is evaluated with a ρ* obtained by
averaging the ρ* of all the subsystems. In practice, the special
points rh are found by the mask condition 0.5− tol < ρI(r)/ρ(r)
< 0.5 + tol, where tol is a tolerance to make sure there are some
points that satisfy this condition. Here, we set tol = 0.1. We note
that eq 10 is to be evaluated only when the environment density,
ρ(r) − ρI(r), is larger than a threshold (1 × 10−6). When ρ* is
below such a threshold, the parent GGA functional is used.
ρ* is determined at the beginning of the calculation and kept

constant throughout the self-consistent field procedure. This
can be potentially problematic during ab-initio molecular
dynamics (MD). However, we plan to determine ρ* from the
electron densities of the preceding MD step, avoiding the need
to run two single-point calculations (i.e., one for ρ* and one with
SMP employing the determined ρ*). In this work, for simplicity,
we determine ρ* by performing a preliminary calculation with
the revAPBEKNAKE. To dispel doubts about the robustness of
the method, we also verified that determining ρ* self-
consistently (i.e., re-running calculations updating ρ* until
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convergence) leads to essentially the same results (see
Supporting Information document Figure S1).
We also carried out a stress test to see how sensitive SMP is to

the choice of ρ*. The results in Figure S2 show that while it is
important to choose an appropriate ρ* to recover accurate
nonadditive energies, the dependence of SMP to the choice of
ρ* is mild. In practical calculations, the subsystems are spatially
separated entities (albeit their densities overlap). Thus, eq 11
applies to a subsystem (ρI(r)) which only mildly overlaps with
the environment (ρ(r) − ρI(r)). For very strongly overlapping
subsystem densities, the sDFT procedure breaks down due to
the inaccuracies in the NAKEs. Although eq 11 was found by
trial and error, we can see from Figure S2 that the ρ* determined
from the equation is very close to the best value which would
match exactly the interaction energy against KS-DFT.
Let us analyze eq 11 tomake sense of the proposed procedure.

First, the special points rh select regions of space where there is a
large overlap between the electron densities of the subsystems. A
NAKE should have an awareness of the inter-subsystem density
overlap.3,35,49,50 Thus, ρ* depends on the value of the subsystem
density at the special points to encode such a dependence.
Second, the choice of ρ* should be such that the switching
function in eq 8 correctly weighs the regions of high density
(relative to the inter-subsystem overlap), assigning the TF
functional to these regions and a GGA functional to the regions
of relative low density. We stress that SMP is a NAKE and cannot
be used as a KEDF functional.

3. COMPUTATIONAL DETAILS

Themolecules are placed in an orthorhombic box, which is large
enough so that the nearest-neighbor periodic images are more
than 12 Å apart. This ensures that the interactions between the
studied systems and their periodic images are negligible. All
sDFT calculations in this work were performed with a
development version of the in-house eDFTpy Python-based
density embedding software,51 which is based on DFTpy.52 All
KS-DFT benchmark calculations were performed with the
Quantum ESPRESSO (QE) package.53 In both subsystem DFT
and KS-DFT calculations, the Perdew−Burke−Ernzerhof
(PBE) form of the GGA xc functional is employed.32 The
GBRV ultrasoft pseudopotentials54 are adopted due to their
excellent transferability. The kinetic energy cutoffs of wave
function and density are 70 and 400 Ry, respectively. The
convergence threshold for self-consistent calculations is 1× 10−8

Ry.

4. RESULTS AND DISCUSSION

In Table 1, we list MADs of the interaction energies computed
with sDFT and various NAKEs against the KS-DFT result
employing the PBE xc functional. The point of this comparison
is to inspect how well the NAKEs perform against KS-DFT
which employs the exact noninteracting kinetic energy. This is a
meaningful comparison22,24 because if the NAKE is exact, the
KS-DFT result should be recovered. To make sure SMP does
not overly rely on error cancellation with the corresponding
nonadditive xc functional, we carried out additional calculations
for the S22-5 set with sDFT (SMP) and KS-DFTwith revPBE as
the xc functional. The MAD between the two methods is 0.6
kcal/mol which is identical to the MAD between sDFT (SMP)
and KS-DFT when the PBE functional is employed. We
conclude that SMP is accurate enough to not display accidental
error cancellation when paired to a specific xc functional. A

similar conclusion is reached for nonlocal NAKEs, such as
LMGPA.17,25

The reader may wonder if the use of pseudopotentials in this
work may affect the results. Different pseudopotentials only
differ in the pseudo density values at the core region of the atoms
and are essentially the same outside of the atomic cores. Thus,
we do not expect pseudopotentials to play any significant role
besides introducing a slight (expected) variability in the results.
To test this assumption, we compute the ρ* parameter for a
formic acid dimer which has the largest inter-subsystem overlap
among the systems in the S22 set and therefore is the most
vulnerable to be affected by errors introduced by the
pseudopotentials. For the test, we chose the GBRV ultrasoft
pseudopotentials (US)54 and the ONCV norm-conserving
pseudopotentials (NC).55 The results are ρ* = 0.072 for US
and ρ* = 0.073 for NC, confirming our assumption.
As we can see from the table, SMP delivers almost always the

most accurate interaction energies for the two data sets chosen
(S66 and S22-5) with exception for hydrogen-bonded systems.
It is generally known that GGA NAKEs like revAPBEK and
LC94 are particularly good with hydrogen-bonded systems22,56

leading these functionals to describe liquid water very
accurately.57 The reason for the good behavior of GGA
NAKEs for hydrogen bonded systems is because the error
introduced in the NAKE offsets errors brought in by the
nonadditive part of the xc functional18,22,58,59 (e.g., the long-
range part of the xc functional is known to include errors of self-
interaction60). SMP, however, is overall of higher quality
compared to these GGA functionals and performs even better
than a nonlocal functional with density-dependent kernel
(LMGPA).61,62

In Figure 1, we break down each contributing dimer to the
S22-5 and S66 test sets. From the figure, it is evident why SMP
works as a NAKE. SMP effectively interpolates between TF and
a GGA functional. GGA functionals, such as revAPBEK, tend to
underestimate the binding energy while TF always over-
estimates the binding energy. An interpolation of the two will
naturally improve the binding energy values. However, SMP not
only exploits error cancellation to deliver improved binding
energies but also does a better job in reproducing the electron
densities as we explain below.
The next test is to check the accuracy of the predicted electron

density. Once again, we carry out this test against KS-DFT
densities. In Table 2, we showcase the density deviations,
computed as ⟨Δρ⟩ = 1/2∫ |ρsDFT(r) − ρKS‑DFT(r)|dr.
The table shows that even though all of the adopted

functionals appear to deliver electron densities that are very
close to the KS-DFT electron density (all values in the table

Table 1. Summary of the MADs of the Interaction Energies
Computed with sDFT Carried out with TF, revAPBEK,
LMGPA, and SMP NAKEs against KS-DFT Resultsa

set functional hydrogen dispersion mixed total

S22-5 TF 4.40 1.60 1.32 2.40
revAPBEK 0.82 2.01 0.53 1.16
LMGPA 0.97 0.89 0.60 0.82
SMP 0.77 0.88 0.18 0.62

S66 TF 5.08 2.48 2.14 3.28
revAPBEK 0.58 1.67 0.91 1.06
LMGPA 1.28 1.24 0.49 1.03
SMP 0.99 0.38 0.16 0.53

aAll values are given in kcal/mol.
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should be multiplied by 10−2), SMP outperforms all other
functionals. Once again, all functionals, and SMP in particular,
do an excellent job with dispersion-bound complexes. However,

they deviate more from the KS-DFT benchmark for hydrogen-
bonded complexes.
We conclude this section with an analysis of the performance

of the NAKEs considered so far (including SMP) in production-
like sDFT simulations by comparing the sDFT interaction
energy results against benchmark CCSD(T) values. We choose
the PBE + D4 xc functional as it was shown to perform
particularly well for weak interactions while maintaining the cost
of a semilocal functional.63,64 In Figure 2, we show violin plots
indicating that for both S22-5 and S66, SMP is the top
performer, not only because the MADs are very close to zero
(MADS22‑5

SMP = 0.53 kcal/mol, MADS66
SMP = 0.68 kcal/mol) but

because the spread of the error is comparable to KS-DFT (for
which the D4 corrections were parametrized) and evenly
distributed (no bias). The results are comparable with KS-DFT
results (MADS22‑5

KS‑DFT = 0.33 kcal/mol, MADS66
KS‑DFT = 0.74 kcal/

mol). Conversely, similar to the results obtained when
comparing against KS-DFT, TF and revAPBEK continue to
show bias in opposite directions (TF overestimates and

Figure 1. Interaction energy deviations in kcal/mol between sDFTwith TF, revAPBEK, and SMPKEDFs against the KS-DFT results for the S22-5 and
S66 test sets. Both KS-DFT and sDFT calculations are carried out with the PBE xc functional.

Table 2. MAD of the ⟨Δρ⟩a Computed with sDFT Carried
out with TF, revAPBEK, LMGPA, and SMP NAKEs against
KS-DFT Results

set functional hydrogen dispersion mixed total

S22-5 TF 3.20 1.40 1.09 1.87
revAPBEK 3.07 1.67 0.96 1.89
LMGPA 3.07 1.45 0.90 1.79
SMP 2.94 1.14 0.87 1.63

S66 TF 3.52 2.08 1.76 2.49
revAPBEK 3.29 2.17 1.60 2.39
LMGPA 3.30 1.82 1.47 2.23
SMP 3.14 1.36 1.32 1.97

aThe actual values of ⟨Δρ⟩ are the values in the table multiplied by
10−2.

Figure 2. Violin plots overlaid on box plots of the interaction energy deviations of KS-DFT and sDFT with several NAKEs for the S22-5 and S66 test
sets comparing against CCSD(T) interaction energies. Both KS-DFT and sDFT are carried out with the PBE + D4 xc functional. The box (thick black
bar) in the centre represents the interquartile range and the thin black line indicates the range of data falling within 1.5× box length beyond the upper
and lower limits of the box. The white diamond mark in the middle is the median value.
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revAPBEK underestimates). The nonlocal LMGPA delivers
interaction energy deviations that are slightly more deviated
from the benchmark and spread out compared to SMP
(MADS22‑5

LMGPA = 0.77 kcal/mol, MADS66
LMGPA = 0.69 kcal/mol).

5. CONCLUSIONS

This work proposes a new nonadditive kinetic energy functional
to be used in subsystem DFT (or density embedding)
calculations. The developed functional (termed SMP) is
inspired by the role of the nonlocal part in nonlocal kinetic
energy functionals, that is, to effectively remove the von
Weizsac̈ker functional and only keep Thomas-Fermi in the
high-density regions and do the opposite in low-density regions.
SMP effectively interpolates from a GGA functional (we choose
revAPBEK) to the Thomas-Fermi functional in high-density
regions. Additionally, SMP is (sub)system-specific because it
contains a parameter, ρ*, determined automatically and specific
to the particular inter-subsystem density overlap occurring in the
simulations. SMP is overall very accurate, improving on the two
most accurate nonadditive kinetic energy functionals available to
date for reproducing conventional DFT and benchmark
CCSD(T) interaction energy values for the S22-5 and S66
test sets retaining the computational cost of a semilocal
functional.
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