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ABSTRACT
Crystal structure prediction has been a subject of topical interest but remains a substantial challenge especially for complex structures as it
deals with the global minimization of the extremely rugged high-dimensional potential energy surface. In this paper, a symmetry-orientated
divide-and-conquer scheme was proposed to construct a symmetry tree graph, where the entire search space is decomposed into a finite
number of symmetry dependent subspaces. An artificial intelligence-based symmetry selection strategy was subsequently devised to select
the low-lying subspaces with high symmetries for global exploration and in-depth exploitation. Our approach can significantly simplify the
problem of crystal structure prediction by avoiding exploration of the most complex P1 subspace on the entire search space and has the
advantage of preserving the crystal symmetry during structure evolution, making it well suitable for predicting the complex crystal structures.
The effectiveness of the method has been validated by successful prediction of the candidate structures of binary Lennard-Jones mixtures and
the high-pressure phase of ice, containing more than 100 atoms in the simulation cell. The work therefore opens up an opportunity toward
achieving the long-sought goal of crystal structure prediction of complex systems.
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I. INTRODUCTION

Knowledge of crystal structures is essential if the proper-
ties of materials are to be understood and exploited, particularly
when establishing a correspondence between material performance
and their chemical compositions. There is a high interest in crystal
structure prediction (CSP), where crystal structures are precisely
predicted from theory without acquiring any prior known structure
knowledge in case the only given information is the chemical
compositions of materials. Thermodynamics plays a critical role
in determining the structures and the likelihood of the structures
formed in nature associated with their energies. CSP is targeted
to identify the energetically most favorable structure that is syn-
thesizable in experiments and whose energy is a global minimum
on the potential energy surface (PES), a vast “landscape” in a
high-dimensional space that possesses high energy barriers separat-
ing energy minima.

Unfortunately, since the analytic form of the PES is unknown,
a numerical solution for finding the global minimum is essential.
Application of the variable-cell geometry optimization,1 which is
commonly used in modern CSP methods,2–6 simplifies the targeted
PES from a continuous landscape into discrete energy minima.
However, the number of energy minima is still an astronomical
figure (e.g., it is roughly estimated to be 1042 for a system of
100-atom Lenard-Jones cluster7) and scales exponentially with the
number of atoms in a structure. Mathematically, global minimiza-
tion among these energy minima is a nondeterministic polynomial-
time hard problem, posing a grand challenge for CSP.8

A variety of popular CSP methods (see, e.g., Ref. 9 for details
on the different methods) were recently developed and successfully
applied to solve structure-related problems, leading to a number
of major discoveries (e.g., the finding of pressure stabilized high-
temperature superconductor LaH10 that holds the record high Tc
at 260 K known thus far10,11). These methods were proposed based
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on various sampling schemes on PES, including the simulated
annealing,12 basin-hopping,13 minima hopping,14 metadynamics,15

random sampling,3 genetic algorithm,16–20 and swarm-intelligence
algorithm.2,4,5 These methods use different structure searching
schemes but share a common strategy: direct sampling over the
entire PES.21 Since the search space is vast as aforementioned
and the typical first-principles structure searching simulations can
only explore several ten thousand structures or much less, a direct
sampling faces inevitably a problem of insufficient sampling, espe-
cially for a large system (e.g., structures having >50 atoms in the unit
cell).

Crystal structures sitting at PES constitute a vast structure
(or configuration) space. A sampling on structure space is mathe-
matically equivalent to sampling on PES. In an effort to avoid the
above-mentioned insufficient problem for a direct sampling on PES
associating with the spatial arrangements of atoms, we develop a
symmetry-orientated divide-and-conquer scheme via the construc-
tion of a symmetry tree graph (STG) that allows for a rigorous
decomposition of a vast structure space into a number of symmetry
dependent structure subspaces and elimination of the most
complex P1 subspace to significantly reduce the complexity of
the structure space.22 A symmetry-preserved artificial intelligent

algorithm (SPAI) was subsequently devised to locate the suitable
subspaces and further performs in-depth exploitation in the selected
promising subspaces. As we will illustrate in more detail in the
following, if the stable crystal structure has a high symmetry, high
searching efficiency and success rate can be achieved for the current
method.

II. METHODS
Description of a crystal structure containing N atoms needs a

maximal number of 3N + 3 degrees of freedom for structural param-
eters including six for the crystallographic unit cell and 3N − 3 for
atomic positions. The actual number of degrees of freedom depends
on the symmetry of a structure. As depicted in Fig. 1(a), for a
100-atom structure, 303 degrees of freedom are required to model
a triclinic system, while it is substantially reduced to 23 for a high
symmetric cubic system. It is empirically suggested that the search
space with a high degree of freedom usually has a large hyper-
volume23 on PES, as further supported by the mathematical fact that
there is an exponential increase in the number of energy minima
n(d) with the number of degrees of freedom (d): n(d) = eαd, where

FIG. 1. (a) The maximal number of degrees of freedom to model a crystal structure containing 100 atoms for the choices of different symmetries. (b) The estimated number
of structures (ns) in a log10 scale sitting at energy minima vs the various system sizes for P1 and P213 symmetries. Note that the system-specific constant of α is set to be
1.0 for both systems. (c) The distribution of 20 000 random structures of MgAl2O4 over the energy for all symmetries and P1.
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α is a system-specific constant.8 The dramatic reduction of d for a
high symmetric structure results in a substantially reduced n(d) as
illustrated in Fig. 1(b), where n(d) for a low symmetric P1 structure
is compared with that for a high symmetric P213. It is seen that the
number of energy minima for a 64-atom system reaches up to ∼1085

for P1, whereas it is amazingly reduced to 106 for P213.
As described above, the complexity of the structure space

originated from the complexity of low symmetric structures. As a
result, a direct sampling over the structure space inevitably enhances
the visibility of low symmetric structures, whereas high symmetric
structures are underrepresented as illustrated by a numerical exper-
iment for 20 000 random structures of MgAl2O4 showing 85.85%
and 14.15% occupancies for P1 and other symmetric structures in
Fig. 1(c), respectively. In case that the true structure is having a high
symmetry, the problem we face for CSP would be much simplified
as we can mainly focus on high symmetric structures. Our wish is
not in contradiction with the previous statistical analysis on that the
crystal structure is likely with high symmetry.24

Earlier methods4,25 that use symmetry for the generation of
structures cannot be used for such a purpose since the symmetry
is not preserved during structure evolution, leading to enhance-
ment of the visibility of P1 structures. While the predefined cell
parameters are usually required to preserve symmetry for several
genetic algorithms using symmetry-adapted-crossover operations.
Thus, these methods can only apply to specific systems (e.g.,
substitutionally disordered materials).26 We here construct a
three-level STG in Fig. 2 to represent the structure space in which
crystal structures are grouped into a set of crystal symmetry depen-
dent subspaces (level 1) and site-symmetry related groups (level 2)
following the rules of crystallographic symmetry. In level 1, for
a three-dimensional crystal, using 230 space groups as subspaces
can give a rigorous description of an entire structure space (S) as
described by S = ⋃230

i=1Si, where Si denotes the ith subspace with the
ith space group. Each subspace Si can be further subdivided into a

set of site-symmetry related groups (Si,j) in level 2 as described by
Si = ⋃n

j=1Si,j. Within each Si,j, the structures share the same combi-
nation of the Wyckoff positions. The complete list of all possible
combinations (n) is mathematically enumerated, and atomic posi-
tions in structures can be obtained by coordinate descriptions of the
Wyckoff positions, i.e., crystallographic orbits. In level 3, once the
crystallographic orbits are determined, the structure space is eventu-
ally decomposed into symmetry-cataloged subspaces within which
the structures could reduce to a same local minimum structure
after the geometry optimizations. One example of STG of MgAl2O4,
which has 28 atoms in the cell, was presented in Fig. S1.

With the STG at hand, it is now possible to develop the divide-
and-conquer scheme for crystal structure prediction. There is a need
of three different agents that allow for proper samplings on the
corresponding three different levels in the STG. We name them as
scout, onlooker, and employee agents, which are borrowed from
the artificial bee colony algorithm.27–29 Our method is a population-
based evolutionary scheme in which the initial structures in the first
population are generated randomly with the symmetry constraints.
Note that the candidate structures with P1 space group are excluded
to reduce the complexity of the structure space. All structures are
optimized and ranked in order of their energies as high, middle, and
low energy structures that are then assigned as scouts, onlookers,
and employees, respectively. Structures in the next population are
generated with the aid of all three agents of scout, onlooker, and
employee.

The agent scout is responsible for the exploration of 229 sub-
spaces not including P1 in level 1 of STG. Scouts are first discarded
and then re-generated by randomly choosing space groups to avoid
any personal bias on the generation of structure. At the same time,
a strict control to avoid the repetition of the same space group
has been imposed until all 229 space groups have been examined.
These constraints ensure the samplers walk over less-explored space
groups for better coverage of the entire structure space. The agent

FIG. 2. A schematic representation of STG and SPAI for the exploration of STG. Note that each node in STG is located along a one-dimensional unphysical coordinate
simply for visual clarity.
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onlooker is responsible for the exploration of site-symmetry related
groups in level 2 of STG. With the information of space group
unaltered, onlookers randomly choose a different combination of
the Wyckoff positions allowed following the probability pi,

pi =
f iti

∑SN
i=1 f iti

, (1)

where SN denotes the number of onlookers and fiti is evaluated by
its energy (Ei),

f iti =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
1 + Ei

, if Ei ≥ 0,

1 + ∣Ei∣, if Ei < 0.
(2)

The use of probability control ensures that onlookers with
lower energies have a higher probability to be selected for the
generation of structures in the next population. The agent employee
is responsible for the exploration of crystallographic orbits in level 3
of STG. With the information of the space group and site-
symmetry group unaltered, employees randomly choose different
atomic coordinates of the Wyckoff positions to generate structures
in the next population. Our structure searching scheme is con-
trolled in a self-organized manner, and the roles of three agents
can dynamically change depending on the order of their ener-
gies. When an employee cannot be further improved within certain
predetermined cycles, it automatically becomes a scout, whereas
a scout with lower energy can change its role as an employee or
onlooker. The structural variations of the onlooker and employee
act, from the point of view of the entire population, as feedback,
amplify the promising structure space by sharing their crystallo-
graphic information, and ensure the structures in the population
evolve positively by performing more attempts nearby the low-lying
structure space.

Besides the general structure prediction packages, there are also
some very powerful open-source programs (e.g., RandSpg30 and

FIG. 3. The flowchart of SPAI method.

PyXtal31) that can create random symmetric crystals. Our method
can be easily implemented in these programs. Here, we implemented
our method in the CALYPSO packages.4,5 The flowchart of the
SPAI method in CALYPSO is presented in Fig. 3. First, the initial
structures are randomly generated with physical constraints that
include symmetry and minimal interatomic distances. Fingerprint
function4,32 is adopted to quantify similarities of the new structure
with all the previous ones. If the structure is similar to any one of
the previous structures, it will be discarded and replaced by a newly
generated one. After all the structures are generated, variable-cell
geometry relaxations are performed to drive the structure energy to
the local minimum. Then, all the structures of this generation will
be ranked by fitness (e.g., total energy). In the next generation, the
SPAI method will be adopted to generate the new structures. These
steps are iterated until a termination criterion (such as a prescribed
threshold or a fixed number of iterations) is attained.

III. RESULTS AND DISCUSSION
Our method has been benchmarked by the prediction of three

known structures of MgAl2O4, SrTiO3, and Mg3Al2Si3O12 having
28, 50, and 160 atoms in the lattice cells, respectively. The results
are listed in Table I and compared with the results derived from the
simulation runs using the previously developed local particle swarm
optimization (LPSO) method.4 Both schemes precisely reproduced
the experimental structures of MgAl2O4 and SrTiO3 with a suc-
cess rate of 100%; however, the SPAI method is more efficient than
the LPSO method4 as the average number of structures required to
identify the true structure is much reduced.

The efficiency of the current SPAI is comparable to other
popular algorithms. For example, 332 structure samplings are
required to find the ground state structure of SrTiO3 using the
SPAI method, which is less than that required by other methods.25,33

Furthermore, it is evident that SPAI has excellent performance for
the complex structure of Mg3Al2Si3O12, where the earlier approach
fails without a biased input of experimental cell parameters in the
simulation.25 The current method has a high success rate of 100% in
stark contrast to the low success rate of 20% without any constraint
of cell parameters for LPSO. It is also noteworthy that the average
number of structures required to achieve the experimental structure

TABLE I. Simulation results for MgAl2O4, SrTiO3, and Mg3Al2Si3O12 derived from
SPAI and LPSO algorithms without any constraint of cell parameters. 50 different
structure prediction runs are performed for each system where the population per
generation contains 50 structures and the maximum number of generations is set to
be 100. N denotes the average number of structures required to identify the experi-
mental structures of MgAl2O4, SrTiO3, and Mg3Al2Si3O12 for 50 different runs. The
number of atoms in the unit cell is given in the parentheses below each system.

Systems
(No. of atoms) Methods N Success rate (%)

MgAl2O4 LPSO 652 100
(28) SPAI 358 100
SrTiO3 LPSO 809 100
(50) SPAI 332 100
Mg3Al2Si3O12 LPSO 1693 20
(160) SPAI 393 100

J. Chem. Phys. 156, 014105 (2022); doi: 10.1063/5.0074677 156, 014105-4

Published under an exclusive license by AIP Publishing

 22 January 2024 16:20:54

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE II. The energies of BLJM-60, BLJM-80, and BLJM-256 structures predicted
by SPAI, MH, and BH. ϵAA is the potential well depth of the type A atom.

Energy (ϵAA/atom)

BLJM SPAI MH14 BH36

60 −7.50 −7.49 −7.08
80 −7.52 −7.50 −7.33
256 −7.47 −7.43 −7.20

for the current method is amazingly small at 393 for such a complex
system.

To demonstrate the capability of our method for applications
of complex systems, we applied it to predict the plausible crystalline
structures of Ba1.6Ca2.3Y1.1Fe5O13,34 which have been synthesized
by experiments.35 Our approach successfully reproduced the plau-
sible ordered structure of Ba2Ca2YFe5O13 containing 92 atoms in
simulated cells proposed by experiments35 without the requirements
of prior experimental knowledge, validating the effectiveness of our
approach for applications to compositionally complex materials.

Due to highly frustrated PES, identifications of the ground state
crystalline structures of binary Lennard-Jones mixtures (BLJMs)
pose a great challenge.14,36 Our approach is performed to determine
the global minima for BLJMs containing 60, 80, and 256 atoms.
The predicted structures are energetically more favorable than those
found by minima hopping (MH)14 and basin-hopping (BH),36 as
illustrated in Table II. These structures share similar layered struc-
tural features (Fig. S3), which consist of simple close-packed layers
formed purely of A atoms and unexpectedly complex polyhedral
layers formed by mixtures of A and B. It is notable that the unit
cell dimension of the predicted structure of BLJM-256 is amazingly
large over 97 Å. These results demonstrate that our approach holds

a promise for applications to the complex structures of large systems
containing more than 100 atoms.

It is expected that the crystalline structure of ice displays
enormous complexity with a large unit cell because of the existence
of the complex behavior of hydrogen order/disorder. Two structure
predictions of ice with simulation cells containing 48 and 144 atoms
per unit cell were performed at 10 GPa using the new method
and LPSO method as implemented in the CALYPSO code.4 The
developed method successfully reproduces the experimentally
observed I41amd structure and has higher efficiency as evidenced
by the fact that 208 optimized structures are required to identify
the experimental structure of ice,37 which is less than that of LPSO
(>750 structures). Furthermore, the developed method offers a
new structure of Fddd with the distinctive orientations of H2O
molecules compared with the known I41amd structure [Fig. 4(a)].
The new structure contains 144 atoms per unit cell. The static
energy of Fddd, calculated using density functional theory within
the Perdew–Burke–Ernzerhof functional at 0 K, is higher than that
of the I41amd by only 2.0 meV/atom. The Gibbs free energies
of the Fddd and I41amd are calculated within a quasi-harmonic
approximation with respect to the temperature up to 1000 K. It
clearly shows that the stabilization of the Fddd structure is ener-
getically more favorable than I41amd at a temperature of 600 K
[Fig. 4(b)].

Although this work is focused on the development of structure
prediction on three-dimensional (3D) crystals, the proposed STG is
also expected to be equally efficient for the prediction of other struc-
tures (e.g., zero-, one-, and two-dimensional structures). Since there
are only 17 planar or 80 layer groups and 75 rod groups for 2D and
1D structures, respectively, structure searching simulation might be
much easier. For a 0D isolated structure, point groups are used
for the symmetry description, but have an infinite number. Here,
the use of certain point groups, C2, Cs, and C2v, is expected to be
useful.

FIG. 4. (a) The new predicted structure with a space group of Fddd containing 144 atoms in comparison with the stable I41amd structure with a
√

2 ×
√

2 × 3 supercell.
(b) The calculated difference of Gibbs free energies of Fddd with respect to I41amd at a harmonic approximation level as function of temperature up to 1000 K.
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IV. CONCLUSION
In summary, we have developed a CSP method by the intro-

duction of the hierarchical symmetry tree graph combined with
a biased symmetry-adapted artificial intelligence algorithm. The
approach drives the structure search toward the global minimum
by fast identification of the most promising subsets and further in-
depth exploitation. The performance of the proposed method has
been demonstrated by applications to the structural complex sys-
tems of BLJMs and ice, which contain hundreds of atoms per simu-
lated cell. As available computational resources are increased in the
future, it would be expected that our method can be widely applied
in the theoretical treatment of compositionally and structurally
complex structures with large unit sizes containing thousands of
atoms.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of the method
and calculations and information of predicted structures.
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15R. Martoňák, A. Laio, and M. Parrinello, “Predicting crystal structures: The
Parrinello–Rahman method revisited,” Phys. Rev. Lett. 90, 075503 (2003).
16S. M. Woodley, P. D. Battle, J. D. Gale, and C. A. Catlow, “The prediction of
inorganic crystal structures using a genetic algorithm and energy minimisation,”
Phys. Chem. Chem. Phys. 1, 2535–2542 (1999).
17A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio
evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704
(2006).
18N. L. Abraham and M. I. J. Probert, “A periodic genetic algorithm with
real-space representation for crystal structure and polymorph prediction,” Phys.
Rev. B 73, 224104 (2006).
19G. Trimarchi and A. Zunger, “Global space-group optimization problem:
Finding the stablest crystal structure without constraints,” Phys. Rev. B 75, 104113
(2007).
20D. C. Lonie and E. Zurek, “XTALOPT version r7: An open-source evolution-
ary algorithm for crystal structure prediction,” Comput. Phys. Commun. 182,
2305–2306 (2011).
21A. R. Oganov, C. J. Pickard, Q. Zhu, and R. J. Needs, “Structure prediction drives
materials discovery,” Nat. Rev. Mater. 4, 331–348 (2019).
22T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms (MIT Press, 2009).
23C. P. Massen and J. P. Doye, “Power-law distributions for the areas of the basins
of attraction on a potential energy landscape,” Phys. Rev. E 75, 037101 (2007).
24D. J. Wales, “Symmetry, near-symmetry and energetics,” Chem. Phys. Lett. 285,
330–336 (1998).
25A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, “New developments in
evolutionary structure prediction algorithm USPEX,” Comput. Phys. Commun.
184, 1172–1182 (2013).
26C. E. Mohn, S. Stølen, and W. Kob, “Predicting the structure of alloys using
genetic algorithms,” Mater. Manuf. Processes 26, 348–353 (2011).
27J. Zhang and M. Dolg, “ABCluster: The artificial bee colony algorithm for cluster
global optimization,” Phys. Chem. Chem. Phys. 17, 24173–24181 (2015).
28J. Zhang and M. Dolg, “Global optimization of clusters of rigid molecules using
the artificial bee colony algorithm,” Phys. Chem. Chem. Phys. 18, 3003–3010
(2016).
29O. Yañez, R. Báez-Grez, D. Inostroza, W. A. Rabanal-León, R. Pino-Rios,
J. Garza, and W. Tiznado, “AUTOMATON: A program that combines a proba-
bilistic cellular automata and a genetic algorithm for global minimum search of
clusters and molecules,” J. Chem. Theory Comput. 15, 1463–1475 (2018).
30P. Avery and E. Zurek, “RandSpg: An open-source program for generating
atomistic crystal structures with specific spacegroups,” Comput. Phys. Commun.
213, 208–216 (2017).

J. Chem. Phys. 156, 014105 (2022); doi: 10.1063/5.0074677 156, 014105-6

Published under an exclusive license by AIP Publishing

 22 January 2024 16:20:54

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0074677
https://www.scitation.org/doi/suppl/10.1063/5.0074677
https://doi.org/10.1002/jcc.20621
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1016/j.cpc.2012.05.008
https://doi.org/10.1103/physrevb.82.094116
https://doi.org/10.1016/j.scib.2019.02.009
https://doi.org/10.1007/s10955-017-1794-y
https://doi.org/10.1039/c8fd90033g
https://doi.org/10.1063/1.4861966
https://doi.org/10.1103/physrevlett.119.107001
https://doi.org/10.1073/pnas.1704505114
https://doi.org/10.1073/pnas.1704505114
https://doi.org/10.2307/2348448
https://doi.org/10.1021/jp970984n
https://doi.org/10.1063/1.3512900
https://doi.org/10.1103/PhysRevLett.90.075503
https://doi.org/10.1039/a901227c
https://doi.org/10.1063/1.2210932
https://doi.org/10.1103/physrevb.73.224104
https://doi.org/10.1103/physrevb.73.224104
https://doi.org/10.1103/physrevb.75.104113
https://doi.org/10.1016/j.cpc.2011.06.003
https://doi.org/10.1038/s41578-019-0101-8
https://doi.org/10.1103/PhysRevE.75.037101
https://doi.org/10.1016/s0009-2614(98)00044-x
https://doi.org/10.1016/j.cpc.2012.12.009
https://doi.org/10.1080/10426914.2011.552021
https://doi.org/10.1039/c5cp04060d
https://doi.org/10.1039/c5cp06313b
https://doi.org/10.1021/acs.jctc.8b00772
https://doi.org/10.1016/j.cpc.2016.12.005


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

31S. Fredericks, K. Parrish, D. Sayre, and Q. Zhu, “PyXtal: A python library for
crystal structure generation and symmetry analysis,” Comput. Phys. Commun.
261, 107810 (2021).
32L. Zhu, M. Amsler, T. Fuhrer, B. Schaefer, S. Faraji, S. Rostami, S. A. Ghasemi,
A. Sadeghi, M. Grauzinyte, C. Wolverton et al., “A fingerprint based metric
for measuring similarities of crystalline structures,” J. Chem. Phys. 144, 034203
(2016).
33Z. Falls, P. Avery, X. Wang, K. P. Hilleke, and E. Zurek, “The XtalOpt evolution-
ary algorithm for crystal structure prediction,” J. Phys. Chem. C 125, 1601–1620
(2020).
34A. Demont, M. S. Dyer, R. Sayers, M. F. Thomas, M. Tsiamtsouri, H. N. Niu,
G. R. Darling, A. Daoud-Aladine, J. B. Claridge, and M. J. Rosseinsky,

“Stabilization of a complex perovskite superstructure under ambient condi-
tions: Influence of cation composition and ordering, and evaluation as an SOFC
cathode,” Chem. Mater. 22, 6598–6615 (2010).
35M. S. Dyer, C. Collins, D. Hodgeman, P. A. Chater, A. Demont, S. Romani,
R. Sayers, M. F. Thomas, J. B. Claridge, G. R. Darling, and M. J. Rossein-
sky, “Computationally assisted identification of functional inorganic materials,”
Science 340, 847–852 (2013).
36T. F. Middleton, J. Hernández-Rojas, P. N. Mortenson, and D. J. Wales,
“Crystals of binary Lennard-Jones solids,” Phys. Rev. B 64, 184201 (2001).
37K. Umemoto and R. M. Wentzcovitch, “Theoretical study of the isostructural
transformation in ice VIII,” Phys. Rev. B 71, 012102 (2005).

J. Chem. Phys. 156, 014105 (2022); doi: 10.1063/5.0074677 156, 014105-7

Published under an exclusive license by AIP Publishing

 22 January 2024 16:20:54

https://scitation.org/journal/jcp
https://doi.org/10.1016/j.cpc.2020.107810
https://doi.org/10.1063/1.4940026
https://doi.org/10.1021/acs.jpcc.0c09531
https://doi.org/10.1021/cm102475n
https://doi.org/10.1126/science.1226558
https://doi.org/10.1103/physrevb.64.184201
https://doi.org/10.1103/physrevb.71.012102

