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ABSTRACT: Structural optimization has been a crucial component in
computational materials research, and structure predictions have relied heavily
on this technique, in particular. In this study, we introduce a novel method that
enhances the efficiency of local optimization by integrating extra fingerprint space
into the optimization process. Our approach utilizes a mixed energy concept in
the hyper potential energy surface (PES), combining real energy and a newly
introduced fingerprint energy derived from the symmetry of the local atomic
environment. This method strategically guides the optimization process toward
high-symmetry, low-energy structures by leveraging the intrinsic symmetry of the
atomic configurations. The effectiveness of our approach was demonstrated
through structural optimizations of silicon, silicon carbide, and Lennard-Jones
cluster systems. Our results show that the fingerprint space biasing technique
significantly enhances the performance and probability of discovering energetically
favorable, high-symmetry structures as compared to conventional optimizations.
The proposed method is anticipated to streamline the search for new materials and facilitate the discovery of novel energetically
favorable configurations.

The design and discovery of novel materials have been
cornerstones in modern technological advancements,

where computational materials science emerges as a critical
pillar, driving forward the innovative quest for new materials.
Central to this computational endeavor is the prediction of the
structure of materials, fundamental information in under-
standing their properties and functionalities at the atomic scale.
Structure prediction methods, such as CALYPSO,1,2 USPEX,3

XtalOpt,4 basin hopping,5 minima hopping,6 and random
structure search,7 therefore play a critical role in navigating this
challenge, forming the backbone of material exploration and
discovery. To predict a new (meta)stable material, we need to
study its thermodynamic stability with respect to numerous
local minima on a high-dimensional potential energy space
(PES) in the first place. However, finding the most
thermodynamically stable structure of a large assembly of
atoms is a very difficult problem because the number of
minima on the PES of a large system increases exponentially
with the number of atoms.8−10

To surmount this obstacle, several methods have been
developed to improve the capabilities of structure searching
methods. One approach is to introduce a bias into the search
space, targeting the high symmetry structures that are more
likely to be the global minimum. It is extensively studied in
both crystal11 and cluster12 systems that structures with high
symmetry tend to have either very low or very high energy
(Paulings “rule of parsimony”). This may explain why most of
the ground-state structures that exist in nature have high

symmetry. It would be feasible if one could take advantage of
this symmetry bias during the local optimization process and
hence reduce the computation time to investigate the local
minima residing in the high-energy funnels. For example, Shao
et al.13 introduced a symmetry tree graph coupled with an
artificial-intelligence-based symmetry selection strategy, mark-
edly simplifying the problem of crystal structure prediction by
bypassing the exploration of the intricate low-symmetry
subspace within the entire search space. A recent work14

shows that by explicitly introducing a symmetry biased penalty
function to the PES, the downhill barriers were lowered
compared to the uphill barriers. Hence, high-symmetry ground
states will be found much faster than those on an unbiased
surface when performing structure predictions using the
minima hopping method.

While these global optimization methods vary in their
specific structure searching approaches, they all rely on the
integrative calling of the local optimization process. However,
local optimization methods often involve lengthy computation
times and high levels of complexity. Numerous local energy
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minima, many of which have high energy levels, can impede
the optimization process. This impediment is especially
noticeable in strong covalent systems, such as carbon and
silicon. Once covalent bonds are formed, they pose significant
barriers to reconfiguration. Thus, even if more energetically
favorable structures are within reach, accessing them remains
challenging, trapping the system in a potentially energy-
intensive state. This situation has sparked interest in more
efficient methods capable of accelerating this process. For
example, by starting a structure stochastically generated in a
higher-dimensional space (hyperspace), the structure can be
relaxed in the additional dimension, which has been shown to
be effective in enhance the probability of reaching low-energy
configurations.15

In this work, we introduce a new method to enhance the
efficiency of local optimization by introducing an extra
symmetry space. Rather than starting the structural optimiza-
tions initiated from a structure stochastically generated in
hyperspace, we propose a new implicit approach to infuse
symmetry information into the process of local optimization.
This strategy, designed to prevent configurations from
stagnating in high-energy states, is realized through the
introduction of the fingerprint energy that serves as the
indicator of the symmetry of structures. This performance
boost is anticipated to be advantageous for PES exploration
methods that rely on local optimization of structures.
Therefore, this work provides a path toward the objective of
predicting the material structure of complex systems.

In our approach, we introduce the fingerprint space to define
the mixed energy (Emixed) on the hyper PES as follows:

= +E E Emixed fp fp real real (1)

where ωfp and ωreal are the mixing weights, and Ereal represents
the energy on the unbiased PES, as described by methods such
as density functional theory (DFT), machine-learning
potentials, or empirical potentials. Efp is the fingerprint energy
on the fingerprint PES, which is defined based on the sum of
the Euclidean norm of all pairwise atomic fingerprint vector16

distances within the crystal structure:

=
= >

E fp fp
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N

i jfp
1

2
at at
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where Nat denotes the number of atoms in the unit cell, and fpi
and fpj are the atomic fingerprint vectors for the atoms indexed
by i and j, respectively. The coefficient η is a scaling factor
utilized to equate the units of our fingerprint energy to the
corresponding physical units. The atomic fingerprint vectors
(fpi) are employed to characterize the chemical environment
of an atom i within structures. These vectors are derived from
the eigenvalues of the localized Gaussian overlap matrix,16,17 a
method proven to be both efficient and reliable in distinguish-
ing various atomic environments.16,18,19

The concept of symmetry in crystal structures is intimately
linked to the similarity of the local environments of atoms
within the structure. In high-symmetry structures, atoms
typically share similar local environments, reflecting uniformity
and orderliness in their spatial arrangement. Conversely, low-
symmetry structures are characterized by diversity in the local
environments of atoms, indicating a more irregular and varied
atomic arrangement. This contrast in local environments serves
as a fundamental indicator of the overall symmetry of a
structure. The degree of similarity in the local environments of

different atoms can be effectively quantified to gauge the
symmetry of a structure. Here, atomic fingerprints emerge as
an efficient tool. By assessing the differences in atomic
fingerprints across a structure to obtain a direct measure of
its symmetry, we can identify fingerprint energy as an effective
metric. Lower fingerprint energy corresponds to higher
structural symmetry, indicating a more uniform distribution
of atomic environments throughout the crystal. A structure in
which all atomic environments are identical, such as in a
diamond structure, would exhibit a fingerprint energy of zero,
epitomizing perfect symmetry. Therefore, the process of
minimizing fingerprint energy through a tailored fingerprint
force-field becomes a strategic approach to optimizing crystal
structures toward enhanced symmetry. This methodology not
only provides a clear path to achieving higher-symmetry
configurations but also offers a nuanced understanding of the
underlying symmetry in complex crystal structures.

In order to effectively introduce the fingerprint space during
the optimization process, a specific parametrization is
incorporated into the mixing strategy, ensuring that the
transition toward physically realistic structures is informed by
both the exploratory freedom of hyperspace and the actual
features of the target structure. In the early stages of structural
optimization, structures are free to explore in the fingerprint
landscape, unconstrained by the typical limitations of a normal
structural space. This initial phase is crucial for avoiding
potential traps and exploring a broader range of conforma-
tional possibilities. However, as the optimization process
advances, it becomes imperative to guide these structures
toward a final configuration that resides entirely in the normal
space. Unlike the approach of abruptly transitioning from the
biased to the unbiased PES after a few local geometry
optimization steps, as implemented in the minima hopping
method by Huber et al.,14 we aim for a smooth transition from
the expansive exploration in hyperspace to the final, physically
realistic structures. The mixing weights are chosen as follows to
facilitate this transition:

=
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where Θ represents the Heaviside step function, and xiter =
niter/nmax. Here, niter denotes the current step of the structural
relaxation, and nmax is a user-defined integer representing the
maximum number of structural relaxations before deactivating
the fingerprint space.

To implement structural optimization in the mixed space, it
is important to calculate the forces of each atom in guiding the
structures to an energetically favorable configuration. The
atomic forces on the mixed PES can be obtained from taking
the partial derivative of the 3Nat Cartesian coordinates (where
Nat is the total number of atoms in the system) with respect to
mixed energy:

= E EF
x xmixed fp fp real real (4)

The derivatives of the real energy will be obtained from the
DFT or force field calculations, while the derivatives of the
fingerprint energy can be defined as follows:
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where xk
D denotes the Dth Cartesian coordinate of the kth atom,

and the derivatives of the atomic fingerprint are calculated
using the Hellmann−Feynman theorem (see details in the
Supporting Information). For the crystal structures, the
Cauchy stress tensor is calculated using finite difference

method, = E1 fp , where ϵαβ are the elements of the strain

tensor. The stress tensor elements σαβ are defined as the
volume normalized negative strain derivatives of the fingerprint
energy.

Our methodology was implemented in Python 3, utilizing
the Atomic Simulation Environment (ASE)20 to interface with
various calculators to perform energy and force calculations at
the level of DFT or force fields. To demonstrate the
effectiveness of our approach, we performed structural
optimizations on randomly generated initial structures for
both the crystal and cluster systems.

For crystals, our focus was on silicon and silicon carbide
systems, chosen for their propensity to form complex
allotropes and compounds. This leads to intricate and
challenging PES landscapes, making them suitable testbeds
for our method. This complexity arises from the intricate PES
and small energy variations relative to their global minima,
primarily influenced by sp2 and sp3 hybridization.21−25 We
generated initial random structures (300 for each system)
using the CALYPSO code1,2 without bias toward specific space
or point groups. For local optimization, we employed the ASE
built-in optimizer, FIRE (fast inertial relaxation engine),26 for
simultaneous optimization of atomic positions and cell
parameters. The energy and force calculations for the real
PES were performed using DFTB+ (Density Functional Tight
Binding method)27 with pbc Slater−Koster parametrization
set28−30 and 0.04 k-grid (equivalent to 0.04 × 2π Å−1 k-point
meshes). Figure 1 shows a comparison of the distribution of
local minima obtained through optimization on the real PES

with those identified using the mixed PES approach. We can
find that the fingerprint space biasing technique effectively
shifts the energy landscape, promoting the emergence of high-
symmetry structures. For both the Si32 and Si16C16 systems,
there is a significant density of high-symmetry structures at
lower enthalpy levels when the optimization is guided by the
fingerprint space, indicating that the probability of finding
energetically more stable structures is significantly enhanced.
In addition to identifying lower-energy structures, our method
also successfully identified high-symmetry structures that were
not found in the optimization using the real PES. For example,
the I4/mmm-Si32 structure (Figure 2a) and the P4/mmm-
Si16C16 structure (Figure 2b) were discovered during the local
optimization only when relaxed on the mixed PES. This
indicates that our method can successfully identify high-
symmetry structures that might otherwise be missed or
underrepresented in conventional optimizations.

Figure 1. Comparison of the distribution of local minima optimized on real PES (red) and on fingerprint mixed PES (blue) for the (a) Si32 crystal
and (b) Si16C16 crystal at ambient conditions. Symmetry, plotted along the x-axis, is measured by the number of symmetry operations that leave the
structure invariant. The opacity of the colored box indicates the relative abundance of structures corresponding to a given symmetry and enthalpy
level.

Figure 2. (a) Top view (from the c-axis) of the relaxed structure (I4/
mmm-Si32) in fingerprint space. The initial structure (P4nc-Si32) has 8
symmetry operations, but after relaxation in fingerprint space, the
structure exhibits 32 symmetry operations. (b) Top view (from the c-
axis) of the relaxed structure (P4/mmm-Si16C16) in fingerprint space.
While the initial structure (P4̅21c-Si16C16) has 8 symmetry operations,
this fingerprint-relaxed structure has 16 symmetry operations. Brown
and blue spheres represent C and Si atoms, respectively. The blue
cubic box denotes the unit cell.
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We also performed structural optimizations on Lennard-
Jones (LJ) and binary Lennard-Jones (BLJ) clusters, which are
commonly used as benchmark systems in structure optimiza-
tion methods due to their well-defined PES landscapes. Our
method was first tested on LJ38 and LJ75 clusters, known for
their nontrivial double-funnel energy landscapes.31 For the BLJ
clusters, the parameters σAA = 1.0, σBB = 0.8, ϵAA = 1.0, and ϵBB
= 0.64 are chosen, with σAB = 0.5 × (σAA + σBB) and

=AB AA BB .
32,33 A total of 200 random configurations were

generated for each cluster using the CALYPSO code, and the
relaxations were performed using the ASE.20 Figure 3 shows a
comparison of the density of states (DOS) as a function of the
energy per atom for different cluster optimizations. We can
find that our method effectively shifts the energy landscape in a
way that promotes the emergence of low-energy config-
urations. For both the LJ and BLJ systems, there is a significant
density of low-energy structures when the search is guided by
the fingerprint space, indicating an enhanced probability of
finding energetically more stable structures.

To further investigate the efficiency of our method, we plot
the trajectories (Figure 4) for LJ-38 and Si16C16 in local
optimization. Utilizing the FIRE (fast inertial relaxation

engine)26 optimizer, we observe a notable acceleration in the
energy and force convergence when the relaxation process is
conducted within the mixed space. This is particularly evident
in the case of the silicon carbide system, where convergence is
markedly swift. For the Si16C16 system, we encounter a funnel-
like energy landscape which typically induces sluggish
convergence. In our case, optimization in the normal PES
failed to converge within 5000 steps. However, the integration
of our fingerprint space dramatically alters this dynamic. It
becomes evident that within the initial 100 steps the optimizer
adeptly surpasses substantial energy barriers. This capability is
crucial, as it allows the system to access lower energy minima
in subsequent geometry relaxation steps. To extend the
validation of the effectiveness of our method, we expanded
our tests by employing different optimization strategies, such
as the conjugate gradient (CG)34 method, and interfacing with
Quantum ESPRESSO35,36 and the Stillinger−Weber poten-
tial37,38 for Si. These extended studies are detailed in Figures
S1−S3 in the Supporting Information, showcasing the
robustness of our approach across a wide range of computa-
tional settings. Our approach thus serves as a testament to the

Figure 3. Density of states (DOS) of the energy distribution of the optimized random-generated clusters with (pink) or without (blue) introducing
fingerprint space. For binary LJ clusters, we choose the chemical formula A13B20 in the BLJ-33 case and A55B60 in the BLJ-115 case.
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power of incorporating hyperspace strategies, which promise to
advance the field of computational material science.

In conclusion, we have developed a new method to utilize
the intrinsic symmetry of atomic structures to enhance the
efficiency of local optimization. By integrating a fingerprint
energy derived from the symmetry of local atomic environ-
ments into the potential energy surface, we have developed an
approach that guides the optimization process toward high-
symmetry, low-energy structures. This implicit symmetry bias,
embedded in the hyperdimensional optimization space, has
been shown to accelerate the discovery of energetically
favorable configurations in both crystal and cluster systems,
thereby streamlining the search for new materials. The
benchmark results obtained from the application of our
method to silicon, silicon carbide, and Lennard-Jones cluster
systems underscore its effectiveness. Notably, the emergence of
high-symmetry structures at lower energy levels and the rapid
convergence of energy and forces during optimization highlight
the potential to reveal previously underexplored regions of the
potential energy landscape. However, it is crucial to acknowl-
edge the scope and limitations of our approach as its
effectiveness is inherently dependent on the relationship
between symmetry and energetic stability within specific
systems. As such, the method may exhibit varying degrees of
efficiency across different material systems, particularly in cases
in which disorder or complex heterogeneity plays a pivotal role
in determining material properties. Overall, our method

represents a step forward in the structure prediction field,
offering an efficient tool for the exploration of complex
potential energy surfaces. As we continue to refine and apply
this approach to a wider range of materials, we anticipate that it
will become an important component of the toolkit in
computational material science.
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