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O(Nlog N) scaling method to evaluate the ion—electron potential

of crystalline solids
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We propose a simple O(N log N) scaling expression in reciprocal space for evaluating the ion—electron
potential of crystalline solids. The expression replaces the long-range ion—electron potential with an
equivalent localized charge distribution and corresponding boundary conditions on the unit cell. Given
that no quadratic scaling structure factor is required—as used in traditional methods—the expression
shows the inherent O(N log N) behavior, and is well suited to simulating large-scale systems within
orbital-free density functional theory. The scheme is implemented in the ATLAS software package and
benchmarked by using a solid Mg body-centered cubic lattice containing tens of thousands of atoms
in the unit cell. The test results show that the method can efficiently simulate large scale crystals with
high computational accuracy. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4967319]

l. INTRODUCTION

Ab initio simulations of materials have become routine
in the recent years, largely due to the success of density
functional theory (DFT).!-> However, the conventional cubic-
scaling Kohn-Sham DFT (KS-DFT) is limited to relatively
small systems with unit cells of up to only thousands of
atoms,® and is inappropriate for simulating many atomistic
processes—for example, fracture or the dynamics of dislo-
cation interactions—where realism is only achieved by con-
sidering millions of atoms. Such large-scale simulations are
beyond KS-DFT, and require a linear scaling quantum mechan-
ics method. The inherent quasi-linear scaling of orbital-free
DFT (OF-DFT) makes it the most promising theory for large-
scale simulations.*> In general, all the interaction terms of
OF-DFT have linear scaling except for the electrostatic inter-
action term for periodic systems.®” The evaluation of the elec-
trostatic potential therefore is the bottleneck in most OF-DFT
programs.®’

Generally, the electrostatic potential can be written as the
sum of ion—ion, electron—electron, and ion—electron terms. In
a periodic system, each of these terms diverges due to the
long-range 1/r nature of the Coulomb interaction.®~'? Diver-
gences that are conditional convergences of extended lattice
summations can be eliminated by formulating the summa-
tions in terms of neutral densities that are well localized in
real/reciprocal space.!?

The ion—ion term can be transformed to a standard Ewald
summation'?® under periodic boundary conditions (PBCs),
which scales as O(M?), where M is the number of atoms in the
system. Particularly, the particle mesh Ewald method'*!> was
proposed as O(M log M) scaling for evaluation of the ion—ion
term. The computational cost of this term is acceptable for
OF-DFT calculations of large systems. The electron—electron
term can be convoluted in reciprocal space with O(N log N)
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scaling under PBCs, where N is the number of grid points in
the system, making its computational cost also acceptable for
large-scale simulations. However, the computational cost of
the ion—electron potential term of crystalline solids scales as
O(N - M) in reciprocal space due to the requirement of cal-
culation of the structure factor.®”-!6 Given that the number of
grid points generally scales linearly with the number of ions,
the computational cost of the ion—electron term is effectively
O(N - M) scaling. Note that N is much larger than M, and
the computation of structure factor is time-consuming. There-
fore, the ion—electron term dominates the computational time
in OF-DFT calculations for large systems.%7-10

Il. THEORY AND BACKGROUND

Two methods with much better scaling have been pro-
posed to calculate the ion—electron potential in reciprocal and
real space. In reciprocal-space representation, the cardinal B-
spline approximation mathematical technique was employed
to significantly reduce the computational cost of calculating
the structure factor for large periodic systems.'® The method
exhibits linear scaling, and has been successfully applied
to systems containing 1 x 10% atoms in the simulated cell.'®
In real space representation, a method has been proposed to
replace the infinite sum of the long-range Coulomb potential by
equivalent localized charge distributions and PBCs. Given the
localized charge distributions and the boundary conditions, the
summations of all the terms of the electrostatic potential can
be evaluated by solving the corresponding Poisson equation. '

Note that the long-range Coulomb potential can be repre-
sented as localized “ion charge” and the corresponding bound-
ary conditions in the real-space based method.'? Based on this
fact, we propose an alternative O(N log N) scaling scheme to
evaluate the ion—electron potential term of crystalline solids
in reciprocal space. Our method can avoid calculation of the
structure factor, and thus the method exhibits much better
scaling. In the pseudopotential approximation, the total ion—
electron potential V;_, of a crystal can be expressed in real
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space V;_.(r) or reciprocal space V;_.(G). Note that V;_.(r)
can be simply evaluated by V;_.(G) with the fast Fourier trans-
form (FFT), which is an O(N log N) operation.!” Therefore,
we focus on the expression of ion—electron potential only in
reciprocal space. For a given periodic system with n atomic
species, the total ion—electron potential V;_. can be expressed
in reciprocal space as’"'®

1 n
Vie(@) = 5 D S GV (G), (M
k=1

where Q is the volume of the unit cell, Vl]; . 1s ionic pseudopo-
tential, and the structure factor of the kth atomic species S k (G)
is given as

nk

SHG) = ) expliG - 1y, @)
j=1

where n* and ry ; are the number of atoms and the position of
the jth atom of kth atomic species, respectively. The term G is
determined by the primitive vectors of reciprocal space b; (i.e.,
G =n1b| + nyb, + n3bs, where n; are integers). The evaluation
of the structure factor in this expression scales as O(N - M).

The local ionic potential of the kth atomic species V{; ()
can be represented by the pseudo-charge density p(r), which
can be used to reproduce the equivalent long-range ionic
potential. The pseudo-charge density, pi(r), is only localized
within the cutoff radius, r¥. Fig. 1 shows a typical local ionic
pseudopotential and the corresponding pseudo-charge density
of Mg, in which the cutoff radius is 2.6 a.u. The spherical
symmetry makes the pseudo-charge density

1 (20 &?

pilr) = o~ (?E + ﬁ) Viee(r)- 3)
Here the numerical representation of Vll(‘) .(r) is on a log grid
and the triple-order polynomial fitting scheme is employed to
estimate the pseudo-charge density. Note that the pi(r = 0)
has the same value as its adjacent point to make pseudo-charge
distribution continuous and smooth at boundary(r = 0).

To eliminate the evaluation of the structure factor, the total
ion—electron potential V;_.(G) can be obtained by the total
ionic charge density, p;(r), and the corresponding PBCs. The
total ionic charge density can be estimated by summation of
all the pseudo-charge density in unit cell
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FIG. 1. Local pseudopotential and the corresponding pseudo-charge density.
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FIG. 2. The sketch of ionic charge distribution on grid points.

n n"
pr) = D" > pr(Rey). @)

k=1 j=1
Here, Ry ; = Ir — ry jl. In principle, if p;(r) of each point is
obtained by considering contributions of all atoms, the com-
putational cost of p;(r) is ON - M) scaling. However, the
pseudo-charge obtained from local pseudo-potential must be
localized within the cutoff radius and no overlap for each
atomic core (see Fig. 2), owning to the first-principle pseudo-
potentials should have strict Coulombic tail. Therefore, the
pi(r) is determined by not more than one atom. Obviously,
Eq. (4) is transformed to following equations:

ok(Re)) Ry <7h,
,01(") =

‘ 5)
0 (Rk:,' >r. ).

Thus, the expression for total ionic charge density p;(r) is
linear scaling.

pi(r) can be used to evaluate the total ion—electron poten-
tial in real space V;_.(r) by solving a Poisson equation with
the PBCs. However, the most convenient way to obtain the
ion-electron potential in reciprocal-space is by

4rp(G)
—_— G +0),
Viee(G) = IG|? ( . (6)
Vi—e(G) (G =0,
where p;(G) can be obtained by the FFT,
pi1(G) = FFT (py(r)). (7

Just as in the conventional reciprocal method,®”!8 our method
also shows the divergent problem for evaluating ion—electron
energy for a charge-neutral periodic system. The problem can
be neglected, because the singularity at G = 0 is canceled
exactly by similar divergences in other electrostatic-interaction
terms (the ion—ion and electron—electron interactions) in the
reciprocal-space representation.®’-!® The same technique used
in the conventional reciprocal method is employed in our
scheme. Particularly, the V;_.(G = 0) term in Eq. (1) can be
expressed in reciprocal space as

1 n
Vi G=0)= 5 > SG=0VE(G =0,
k=1

1 n
=5 Z n*VE (G = 0), (8)
k=1

where n€ and Vl'f) (G = 0) are the number of atoms and the

local ionic potential of the kth atomic species, respectively.
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- where Vl]; c(r) and Z; are the local pseudopotential and the
] e number of the valence electrons of the kth atomic species,
£ 6 respectively. Because
=]
= k
= s Vi = (r > 1f), (10)
g
T 44 the local ionic potential Vlk at G =0 can be rewritten as
= *——o oC
B p
= 3 ¢ 2
% ] lOc(G 0)=4n loc(r) + dr. (11)
5 , o——@ 0
5 ] Therefore, V;_.(G) can be determined by Egs. (6) and (8).
= o N __] The detailed processes for evaluating V;_.(G) are sum-
S o—o—% . marized as follows.
o— ‘.\.\
0 (i) Evaluate pi(r) and loc(G = 0) via Egs. (3) and (11),
026 024 022 020 018 016 014 012 0.10 and store them in pseudopotential files before OF-DFT
Grid spacing (&) ) calt.:ulatlons. o '
(i) Estimate the total ionic charge density, p;(r), by Eq. (4)
FIG. 3. Convergence of the total energy of bulk bcc Mg (2 atoms/cell) versus with known pg(7) and structural information.

the grid spacing. For clarity, the total energy obtained with the considered (iii) Calculate V;_.(G = 0) and V;_(G # 0) by Eq (8) with
finest grid space (0.10 A) is selected as the reference. t tme L e -
VlOC(G = 0) and Eq. (6) with p,(r), respectively.

Once V;_.(G) is known, the ion—electron potential in real

Note that only the difference between the pseudopotential and space, Vi_(r), can be obtained by an inverse FFT.
£ 1—e £ ’

the pure Coulomb potential is how to evaluate the local ionic

potential V' at G = 0. The local ionic potential, Vi at G=0, Vie(r) = FFT'(Vi_o(G)). (12)
can be estimated by
- Note that parallel algorithm of our proposed expression may be
1 (G=0) = / ( ) - (_é)) r2dr, (9)  not easily achieved for large massively parallel architectures
o 0 . r because of the employment of FFTs in our method.
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FIG. 4. Contour plots on the uniform grid of ion—electron potential calculated based on the new method (red solid line) and the conventional method (blue
dotted line). (a) (001) and (b) (110) planes of Mg with 2 X 2 X 2 bce unit cells, (¢) (001) and (d) (110) planes of Al3Mg with fcc unit cells. Ion—electron potential
and lattice vectors are given in a.u.
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lll. NUMERICAL RESULTS

To verify the equivalence of the present scheme to the con-
ventional reciprocal-space method, we coded it into Ab initio
orbiTaL-free density functionAl theory Software (ATLAS)’
and benchmarked it with bulk Mg with a body-centered cubic
(bcce) lattice. The TF+AvW kinetic energy density functional
and the local density approximation exchange—correlation
functional parametrized by Perdew and Zunger'® are used.
The local pseudopotential of Mg is constructed by our OEPP
scheme,2® which considers a valence electronic configuration
of 3s'3p!. The core cutoff radius of Mg is set as 2.6 a.u.”’ The
ion—ion energy is calculated via Ewald summation.'3

Fig. 3 shows that the fourth-order finite-difference expan-
sion and a grid spacing of 0.17 A are sufficient to converge the
total energy to well within 1 meV/atom. Therefore, these set-
tings are employed in all the following calculations. Note that
a time-saving double-grid technique?' is adopted to accurately
estimate the total ionic charge density for each grid in the unit
cell by each pseudo-charge density, which is stored in pseu-
dopotential files. The dense grid-spacing is set as h%™ = h,/2,
and A, (@ = x,y, and ) is the coarse grid-spacing. Ninth-order
Lagrangian interpolation is used to obtain the total ionic charge
density of the coarse grid.

To validate the new scheme, we compare its calculation of
an ion—electron potential with that of a conventional method
using structure factor. The resulting contour plots of the ion—
electron potential of bcc Mg and face-centered cubic (fcc)
AlzMg on the (001) and (110) planes are shown in Fig. 4.
The negligible difference of ion—electron potential obtained
by two methods demonstrates the accuracy of the new scheme.
For further benchmarking our proposed method, the bulk prop-
erties of hexagonal close-packed Mg, fcc Al and Al3Mg are
calculated and compared with those obtained by the CASTEP
code?? within KS-DFT. Note that the equilibrium volume and
bulk modulus By of the studied here were determined by fit-
ting the total energies as a function of volume to the Keane
equation of states.”> The calculated equilibrium volume V,
total energy Eg, and bulk modulus By are listed in Table I.
It is clear that the calculated V, Eq, and B are in excellent
agreement with the KS-DFT data. This lends a strong support
on the validity of our method.

Furthermore, we have calculated the total energies of
supercell structures of bcc Mg with different system sizes (up

TABLE 1. Bulk properties obtained by OF-DFT: equilibrium volume (V per
atom in A3), total energy (Ey in eV per atom), and bulk moduli (Bg in GPa).
The data of KS-DFT and kinetic energy density functional parameters of our
OF-DFT calculations are adapted from Ref. 7. Note that the new scheme and
conventional method are employed to evaluate the ion—electron potential in
OF-DFT and KS-DFT, respectively.

Systems Methods Vo Ey By
Mg KS-DFT 22.023 —24.588 36.5
Our work 21.902 —24.595 32.6
Al KS-DFT 18.029 -56.799 69.4
Our work 18.483 -56.795 66.9
AlzMg KS-DFT 19.031 —48.767 55.2
Our work 19.008 —48.751 57.0

J. Chem. Phys. 145, 184110 (2016)

TABLE II. The total energies (E in eV per atom) of supercell structures of
bce Mg with different system sizes are calculated by OF-DFT, in which the
ion-electron potential is obtained by new method and conventional method,
and the corresponding energy differences are also included.

System size 100 1000 4000 8000

E obtained by new method 24.4074 24.4074 24.4075 24.4075
E obtained by conventional method 24.4028 24.4028 24.4028 24.4028

Energy difference 0.0046 0.0046 0.0047 0.0047

to 8000 atoms) using OF-DFT within the ion-electron potential
calculated by the new method and conventional method. The
testing results are shown in Table II. The energy difference is
constant and negligible with increasing the system sizes. Obvi-
ously, the accuracy of our proposed method is independent of
the system sizes.

To demonstrate the performance of new scheme, the
ion—electron potential of bulk bcc Mg supercells containing
different numbers of atoms (up to 12 000 atoms) was calcu-
lated by using the new approach and the conventional method
within structure factor. The total calculations times using these
two methods are shown in Fig. 5. Compared to conventional
method, the new approach shows better computational effi-
ciency and approximately linear scaling with a small prefactor.
In particular, the computational time required for an Mg super-
cell containing 12 000 atoms is decreased substantially from
~18 000 s for the conventional method to ~316 s for the new
scheme.

Within this scheme, the computational efficiency of
ATLAS’ is further tested on Mg supercell with a single
processor. The total time and its contributions from the
time to calculate the ion—electron term and all other terms
throughout the electron density optimizations are presented in
Fig. 6 for systems containing 100-12 000 atoms. The com-
putational costs show approximately linear scaling with the
number of atoms, because the new scheme is employed to cal-
culate the ion—electron potential term. The proportion of time
spent calculating the ion—electron term is trivial, and does not

1000
—&— New developed method
—e— Conventional method
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Number of atoms

FIG. 5. Total time (wall time) to calculate the ion—electron potential term for
different numbers of atoms with the conventional method (black line) and the
new method (red line).
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FIG. 6. Total time (wall time) using the new method with ATLAS to cal-
culate the total energy during electron-density optimization for systems of
100-12 000 atoms in a simulated bcc Mg cell. The total time (blue line) is
shown as the sum of the times for the ion—electron potential term (red line)
and for all other potential and energy terms (green line).

dominate the total computational time within the new scheme.
In this regard, our new scheme can greatly improve the com-
putational efficiency of ATLAS the software, and could be
applied to large-scale OF-DFT simulations. It is noteworthy
that our method can also be used to reduce the computation
time for the ion—electron term in KS-DFT simulations, albeit
the time spent calculating the ion—electron term of KS-DFT
does not dominate the total computational time.

IV. CONCLUSION

In summary, an alternative simple expression for calcu-
lating the ion—electron potential of crystalline solids is pro-
posed. Because the expression does not require evaluation of
the structure factor for periodic systems, our approach shows
O(N log N) scaling and can effectively overcome the limita-
tion of high computational cost of conventional approaches.
Therefore, it is well suited to simulating large-scale systems
within OF-DFT. The method is implemented in ATLAS soft-
ware and benchmarked using bcc Mg containing large numbers
of atoms per unit cell (up to 12 000 atoms). The results show
that our method can achieve high computational accuracy and
efficiency.
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