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ABSTRACT: Subsystem density functional theory (DFT) is emerging
as a powerful electronic structure method for large-scale simulations of
molecular condensed phases and interfaces. Key to its computational
efficiency is the use of approximate nonadditive noninteracting kinetic
energy functionals. Unfortunately, currently available nonadditive
functionals lead to inaccurate results when the subsystems interact
strongly such as when they engage in chemical reactions. This work
disrupts the status quo by devising a workflow that extends subsystem
DFT’s applicability also to strongly interacting subsystems. This is
achieved by implementing a fully automated adaptive definition of
subsystems which is realized during geometry optimizations or ab initio
molecular dynamics simulations. The new method prescribes
subsystem merging and splitting events redistributing the resources
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(both for work and data) in an efficient way making use of modern parallelization strategies and object-oriented programming. We
showcase the method with examples probing from moderate-to-strong inter-subsystem interactions, opening the door to using
subsystem DFT for modeling chemical reactions in molecular condensed phases with a black box computational tool.

1. INTRODUCTION AND THEORETICAL
BACKGROUND

Density functional theory (DFT), and specifically Kohn—Sham
DFT (KS-DFT), is the method of choice for modeling the
electronic structure of molecules and materials. The cubic
scaling of algorithms resulting from practical implementations of
KS-DFT becomes a major nuisance when systems of realistic
(large) sizes are targeted for the simulations. The problem arises
because the electronic structure in KS-DFT is found by solving
the so-called KS equations’

1, }
—=V* + u(r) [@p(r) = gp(r
|29+ u@ee) = e o
where we introduced the KS potential, v,(r), and ¢; are the KS
orbital energies. The KS orbitals, ¢,(r), are used to recover the
electron density of the system

p(r) = Y mlg(x)P
i )

where the {n;} are the occupation numbers that sum up to the
total number of electrons, namely, Y., = N.

Equation 1 is formulated because one wishes to minimize the
energy functional

Elp) = Thol + [ra(0p()dr + Enlpl + Elpl ;)
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with respect to variations in the KS orbitals.
_ 12 . . . I
Tpl = 3, "i<¢i‘ - EV ‘d)l> is the noninteracting kinetic

energy, Eylp] = % / %drdr' is the Hartree functional,

and E, [p] is the exchange—correlation (xc) functional.

We remark that among the ingredients of the KS potential in
eq 1, there is the xc potential, which is defined as the functional
OE,lp]
dp(r)
functional needs to be approximated in practical calculations,

derivative of the xc functional, v _(r) = . Clearly, as the xc

different xc approximants will perform differently depending on
the type of systems and processes the KS-DFT method is tasked
to approach.

To analyze the computational cost of the algorithm, we
remark that solving eq 1 is equivalent to solving an eigenvalue
equation with matrices of the leading size equal to the number of
basis functions used to expand the KS orbitals. These can be very
large (such is the case for plane wave expansions), and thus, the
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usual O(N®) scaling of typical eigenvalue solvers can be crippling
to the computational feasibility of the simulations.

The main reason for the need to diagonalize the KS
Hamiltonian is because T can only be evaluated with a number
of operations that grow linearly with the number of electrons if
the KS orbitals are orthogonal to each other. Even though it is
possible to reformulate mean-field methods in a basis of non-
orthogonal molecular orbitals,”™ the cost of the resulting
algorithms still scales cubically with respect to the number of
electrons in the system. Therefore, an attractive strategy appears
to be to find ways to improve the computational scaling for
evaluating the noninteracting kinetic energy functional. Such is
the strategy adopted by orbital-free DET®” as well as subsystem
DFT (sDFT, also known as density embedding).”~""

While there are several research avenues aimed at reducing the
computational cost of KS-DET,"' ™" in this work we discuss
methods based on sDFT. Similar to DFT, sDFT focuses on the
electron density as the main variational function, and in the spirit
of dividing and conquering the electronic structure, the density
is split into subsystem contributions. Namely

o))=Y p(e)
I 4)

where the subsystem electron densities, {p;(r)}, are assumed to
be smooth and N-representable.”’Ng is the total number of
subsystems.

In sDFT, the energy functional is split into an additive and a
nonadditive term. Namely

Ny
El{p,, vi}] = X Elp, vi] + E™'[{p;, vhe)]
I=1

(s)

The subsystem energy functionals are defined in a way
analogical to the KS functional

Elp, vael = Tlp] + Egylp] + E.lp] + f Uae(£)p, (r)dr
(6)

The nonadditive energy is defined as
E™[{p, vi}] = TP )1 + EZlip )] + EF¥[{p, 1]

+ Y [l

LJ#1 (7)

The nonadditive xc and nonadditive noninteracting kinetic
energy functionals (hereafter NAXC and NAKE, respectively)
are defined trivially as

Ny
F™[{p}] = Flp] - ), Flp|]
=1 (8)

where F is any density functional.

Variational minimization with respect to the subsystem
electron densities is achieved by solving coupled KS-like
equations for each subsystem. The resulting KS-like equations
take the form

=V L)+ vl (0|0 (6) = /(1) o

where the embedding potential, v’
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+ Z [VH[pJ](r) + Ve]xt(r)]
J#I (10)

The embedding potential can be simply derived by taking the
functional derivative with respect to p; of the nonadditive
energy. We remark that the subsystem KS potential only
contains terms depending on p; and the external potential of the
Ith subsystem (i.e,, veIxt(r))

sDFT is exact in principle, however, its practical implementa-
tions require the approximation of both NAXC and NAKE. For
NAXC, one can benefit from the advances applicable to the
functionals employed in mainstream KS-DFT implementations
(such as local and semilocal functionals as well as dispersion
corrections). For NAKE, the landscape is much more
complicated because the literature is much less developed
compared to xc approximants. In principle, NAKEs can be
derived from a parent kinetic energy functional (see eq 8).
However, as opposed to xc, common knowledge is that currently
available kinetic energy functionals are not accurate enough to
produce quantitative results when employed in an orbital-free
DFT simulation for molecular systems.”' The situation is
different for bulk solids (such as metals and some semi-
conductors), surface slabs, and nanoparticles where orbital-free
DFT has been shown to produce results close to chemical
accuracy.”” ™’

However, even though the parent kinetic energy functional
may not be accurate in an orbital-free DFT simulation of the
system of interest, it may be accurate when employed as NAKE.
In fact, there is an ample literature that generally reaches the
conclusion that if the inter-subsystem interactions are weak,
approximate NAKE functionals can reach accurate results,”' >
especially when the parent functional has a nonlocal dependence
on the electron densities of the subsystems.”” Existing reviews
on the subject are listed here for reference.””,**— We remark that
when sDFT is accurate (i.e., for weak inter-subsystem
interactions such as for molecular liquids and interfaces) and
therefore useful for predictive simulations, linear computational
scaling with system size is achieved, thanks to massive parallel
implementations of sDFT and NAKE functionals.”>****~** For
example, sSDFT has gained grounds in recent years for replacing
mainstream KS-DFT in simulations involving ab initio
dynamics, such as for determining the structure of liquids**°
and recently also for determining free energies of solvation.*”

The question we wish to attack in this work is: how can one
retain the favorable computational scaling of sDFT while also
retaining the accuracy of KS-DFT when strong inter-subsystem
interactions occur? Given what we know about kinetic energy
functionals, one might conclude that it is generally not possible.
However, when the strong interactions occur between only a few
subsystems, it may be advantageous to merge the strongly
interacting subsystems into a single subsystem which then is
treated as a single KS-DFT subsystem. We outline this
“adaptive” sDFT in the next section paying particular attention
to describing the details involved when it is translated into an
efficient and scalable software. We remark that merging strongly
interacting subsystems into a single subsystem is equivalent in
spirit to the so-called “projection-based embedding”**** for a
DFT subsystem in a DET environment.’”>" In projection-based
embedding, the partitioning takes place at the level of the
occupied molecular orbitals which are kept orthogonal and
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Figure 1. Depiction of the merged subsystem simulation cell. The cell of the merged subsystem has the same symmetry as the large cell with scaled

lattice vectors to contain the union of the original subsystem cells.

overall reproduce the density and density matrix of the KS-DFT
calculation of the combined system.

In the following section (Section 2), we enumerate the many
details involved for an efficient implementation of adaptive
sDFT, from parallelization to subsystem topology, to basis sets.
Section 3 is devoted to the computational details. In Section 4,
we present a justification of why it is advantageous to merge
subsystems when their interaction becomes too strong. We also
present two applications of adaptive sDFT: one regarding
moderate inter-subsystem interactions such as the ones taking
place between the ions and water in dissolved NaCl; and another
one regarding strong inter-subsystem interactions, such as those
occurring during a chemical reaction (we showcase an Sy2
reaction). Lastly, we draw the conclusions.

2. ADAPTIVE DEFINITION OF SUBSYSTEMS

When subsystems in a sSDFT simulation are in proximity of each
other, and if they interact too strongly, as we have explained, it is
advantageous to merge them into a single subsystem. However,
once the subsystems have merged, the identity of the separate
subsystems is lost. A similar situation occurs when a single
subsystem is found to be composed of two fragments that can be
safely treated as separate subsystems. When this happens, two
new subsystems come in existence.

One may think that the resulting algorithm to encode
subsystem split and merge events is trivial, and that little or no
complications should arise. The reality is quite the opposite as
the ultimate goal is to produce a black box workflow that
automatically, and with minimal user input, handles subsystem
merge and split events. We explain the details of the workflow in
the following sections.

2.1. Subsystem Splitting/Merging, Simulation Cells,
and Plane Wave Basis Sets. The following list defines the
prescription used to split and merge subsystems during an sDFT
simulation:

1. Distance matrices collecting the distances between all the
atoms in a subsystem (dij) and the minimum interatomic
distances between different subsystems (Dy) are
computed and stored.

2. Elements of Dy are compared against the sum of cutoff
radii (roughly equal to the covalent radii increased by
40%), A, which are collected in a database. If Dy <A, then
the subsystem I and ] are merged.

3. Elements of d; are compared against the sum of cutoff

radii and augmented by a threshold, § = 0.2 A. If dj> A+
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6, then atoms i and j which belong to the same subsystem
will constitute the boundary between two new sub-
systems. The subsystem is split into two new ones.

While points (1) and (2) simply implement a standard
algorithm based on interatomic distances, the role of the
additional 0.2 A (8) in the comparison between the interatomic
distances and A + § in point (3) may seem a bit ad-hoc.
Historically, the first version of the algorithm did not feature 6
and the resulting ab initio dynamics and relaxations incurred
into complications given by fluctuations of two subsystems
between a “merged” and a “split” state. Such fluctuations would
persist for several tens of MD or relaxation steps, resulting in
slow timings of execution. The reason for the slow timings for
relaxations is the increased number of iterations. For MD,
increased timings are due to the fact that for each split event, the
initial guess of the electron density needs to be generated from
scratch, which leads to a slower convergence of the SCF
compared to a case where the initial guess is borrowed from the
previous MD step. The addition of the ¢ threshold cured the
problem and led our simulations to be stable and timings to be
optimal. Therefore, the role of 6 in adaptive sDFT is similar to
the role of “switching regions” in QM/MM adaptive dynamics
frameworks.”*~%

An additional complication is given by the choice of basis set
to expand the molecular orbitals of the subsystems. In sSDFT, the
concept of using monomer basis set (i.e., a basis set localized on
the single subsystem such that it does not extend to the entire
system) has a long history.”""*> For codes based on local orbitals
(such as Serenity,”> ADF®* and CP2K®), employing a
monomer basis set simply involves expanding the subsystem
KS orbitals with atomic orbitals centered on atoms belonging to
only that subsystem. In plane wave codes, employing a
monomer basis is less straightforward. The plane wave basis is
related to the simulation cell. Therefore, it needs to be
customized for each subsystem. That is, each subsystem will
use a custom simulation cell (as we have developed previously in
our group>°*’) large enough that the electron density of the
subsystem decays to very small values before reaching the
boundary of the cell.

The computational savings originate from the fact that the
subsystem simulation cells are smaller in size compared to the
large simulation cell chosen for the full system (see Figure 1) and
hence will contain a much smaller number of plane wave basis
functions and real space points. Interactions between sub-
systems are still fully accounted for by computing the long-

https://doi.org/10.1021/acs.jctc.2c00698
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Figure 2. Formulation of a subsystem simulation cell as a function of the atomic coordinates of the subsystem. Panel (a) provides a visual for a water

molecule. Panel (b) shows the effect of R, on the total energy of a water dimer. R

is the vacuum added to each lattice vector direction.

cut

Table 1. Summary of the computational settings of merged subsystems formulated by the adaptive sDFT driver”

subsystem 1 subsystem 2

Ida_plus_u=.true. Ida_plus_u=.false.

smearing=.true. smearing=.false.
degauss, degauss,
ecutrho, ecutrho,

mixing_beta; mixing_beta,

nelec, nelec,

nband, nband,

Ida_plus_u=.true.

smea
max][

max|

min[mixing_beta,;, mixing_beta2]

nelec, + nelec,

nban

comments

GGA+U

smeared occupations

merge operation/choice

ring=.true.
degauss;, degauss, ] smearing parameter
ecutrho,, ecutrho, ] density plane wave cutoff
density mixing parameter
number of electrons

d, + nband, number of KS orbitals

“We list a selected number of input file keywords for Quantum ESPRESSO and the corresponding operands encoding the merge.

ranged interactions on the physical, large cell, and only using the
small cell computations for Hamiltonian diagonalizations and
definitions of subsystem KS orbitals and electron densities. For
periodic subsystems, the cell should retain periodicity. For
example, for slab subsystems, the subsystem cell can be smaller
than the large cell along the vertical direction but not in the xy
plane. The typical computational savings achieved by this
method are dramatic. For example, for liquid water*® and fluid
carbon dioxide,*’ we diagonalized the subsystem Hamiltonians
using only about 5% of the total number of plane waves available
in the large cell.

In an adaptive sSDFT dynamics, where the nature and makeup
of the subsystems may change during a simulation, prescriptions
to combine the simulation cells of merging subsystems, and for
dividing the cells of splitting subsystems, need to be formulated.
We summarize them as follows:

1. Simulation cells of merging subsystems are merged by
finding the smallest cell of same symmetry as the large
(physical) simulation cell that contains the union of the
two, original simulation cells. See a depiction in Figure 1.

. Simulation cells of splitting subsystems are determined in
two ways: (1) if the subsystems have existed before, the
cells and simulation conditions are borrowed from the
previous definitions; (2) if a new subsystem is formed that
had not existed before, the new simulation cell is
determined automatically by the adaptive sDFT driver.
It first determines the smallest possible cell that contains
the subsystem, then it pads the cell by R, of vacuum
along each lattice vector to make sure the subsystem
density decays inside the cell well before reaching the cell

6649

boundaries. Figure 2 depicts this approach showing that
the error introduced in the total energy of a subsystem can
be made very small (in the order of meVs) by adopting
R.: > 3 A. Even though the example in the figure is
specific to a single water molecule, we have tested the
approach with other types of subsystems and determined
that the procedure is robust.

Other quantities and input file-related settings are determined
according to Table 1 and discussed in the next section.

2.2. Computational Settings of Merged/Split Sub-
systems. When merging two subsystems into a combined,
single subsystem, the computational settings governing the
electronic structure computation must be formulated automati-
cally. It is crucial for this step to be automatic so to not require
user input along a Born—Oppenheimer dynamics or geometry
optimization. It would, in fact, be impractical to have to stop and
restart the simulations manually. Additionally, once the
simulations are stopped, they typically drop off the job scheduler
of the high-performance computing system. This would further
add to the frustration of the user. Therefore, we designed a
completely automatic driver that combines and splits sub-
systems at run time. Table 1 summarizes some key rules for
obtaining Quantum ESPRESSO input file parameters for a
subsystem resulting from the merger of two subsystems. We
recall the previous section’s description of how to obtain the
combined subsystem’s simulation cell.

Table 1 collects a minimal set of computational settings that
are determined automatically upon subsystem merge. A sensible
choice for these settings has vital consequences to the
simulation. For example, smearing (and the associated smearing

https://doi.org/10.1021/acs.jctc.2c00698
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parameter mixing_beta) determines orbital occupations which
is especially important for systems with small gaps, such as
metals and some spin-polarized systems. When two subsystems
merge, the safe choice is to use smearing (as opposed to Aufbau
occupations) if any of the merging subsystems already required
smearing. Other settings are still vital but more trivially
determined, such as the number of bands (i.e., computed
orbitals), number of electrons, and total charge.

Less trivial would be predicting the total magnetization of the
merged subsystem. It would not be generally valid to impose the
total magnetization to be the sum of the merging subsystems’
magnetization. Therefore, for this case, the default is to set up
the merged subsystem with a vanishing total magnetization
(spin unpolarized). The driver also allows the user to define
custom subsystems by providing molecular formula, charge, and
magnetization of specific molecules or periodic subsystems that
may arise during a relaxation or a molecular dynamics
simulation. While this may push away the adaptive sDFT driver
from being a true “black box,” it is the simplest way we found to
solve the magnetization uncertainty of merging subsystems and
other computational settings for splitting subsystems as we
further explain below.

When a subsystem splits into two “children” subsystems, as
mentioned in the previous section, if the subsystems were
defined at the beginning of the simulation, the cells and
simulation conditions are borrowed from the previous
definitions. However, if the splitting event generates new
subsystems, the adaptive SDFT driver assigns to them the same
computational settings as the parent subsystem. Additionally,
assuming the parent subsystem has neutral charge, the children
subsystems are also considered to be neutral. Clearly, this is not
ideal when bonds break heterolytically. If this is the case, and if
the user is expecting such a possibility, then it is enough to define
the molecular formula of the predicted “child” subsystem, assign
to it a charge, and include it in the list of possible subsystems (a
database file used by the adaptive sDFT driver). This will guide
the adaptive sDFT driver in breaking bonds according to a
specified, expected outcome.

2.3. Computational Resources of Merged/Split Sub-
systems. In addition to the input file parameters (keywords), to
run a simulation one must assign computational resources to the
merged subsystem. It is natural to assign a merged subsystem the
sum of the resources previously employed for the original
subsystems. This is straightforward in theory but less so in
practice considering that the combination must be achieved at
run time.

Resources are typically handled by parallel algorithms based
on message passing interface (MPI). MPI communicators are
used to handle the memory associated to each subsystem. A
shown in Figure 3, we outline the method we implemented in
eDFTpy® for handling the parallel resources for memory and
work. When two subsystems are merged, the resources must be
reconfigured. Specifically: (1) the set of comm_sub and
comm_region is reset (see Figure 3 for the detailed explanations
of the involved MPI communicators), assigning to the new
comm_sub the sum of MPI tasks of the original communicators.
For comm_region, because it depends on the spatial extension of
the subsystem cell, it is redefined specifically for the merged
subsystem. Along the new set of communicators, the
corresponding arrays are also reallocated for the merged
subsystem only.
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Grid

CPU

L

simulation cell

comm_sub

Figure 3. Parallelization of work and data in eDFTpy. MPI
communicators are used for several purposes. Specifically, comm_sub
are communicators devoted to the subsystem KS-DFT solver (in this
work, Quantum ESPRESSO). Data from a subsystem (e.g., the electron
density and potentials) need to be represented on the global grid for the
computation of the embedding potentials. Thus, “region” communi-
cators (comm_region) handle the memory when gathering and
scattering a subsystem density or potential on the global grid. Data
are broadcast from comm_sub to comm_region by gather-scatter on a
single CPU. Given the typically reduced sizes of the subsystems, such an
operation requires a small memory allocation for each subsystem. A
major benefit of using comm_region is that it avoids gathering global
data (from the large simulation grid) on a single CPU which would be
unfeasible for large systems. See ref 68 for additional details.

3. COMPUTATIONAL DETAILS

All calculations have been carried out with the in-house eDFTpy
code® which employs Quantum ESPRESSO (QE)”° as the KS-
DFT solver. In order to better incorporate QE into the
workflow, we developed a Python interface to QE, called
QEpy,”" which is capable of interacting with QE from the
Python side, providing QE with custom external potentials fed as
NumPy arrays (gathered and distributed). Additionally, QEpy is
compatible with the parallelization strategy of eDFTpy handled
by mpi4py.”” Plane wave cutoffs are set to 40 Ry for
wavefunctions and 400 Ry (Ry stands for Rydberg atomic
units) for the electron density, tested successfully in several past
publications involving the same pseudopotentials (GBRV'” in
this work). In all simulations, we use the revAPBEK™® NAKE
and the PBE’* xc functional. In all Born—Oppenheimer
dynamics, we use a time step of 1 fs. We collect all the structures
and trajectory files for all the simulations presented in the
Results section and list the covalent radii used in the adaptive
sDFT simulations in the supplementary materials.”

4. RESULTS

The results section is organized as follows. First, we present two
test systems. First a water dimer and then a Diels—Alder
reaction. In both cases, subsystems sample interactions from
weak to strong. The test systems show that adaptive sDFT
produces energies and atomic forces, in general agreement with
KS-DFT of the supersystem. Then, we use NaCl in water as an
example of moderate inter-subsystem interactions. We show a
Born—Oppenheimer dynamics trajectory for the dissociation of
the NaCl molecule to Na" and Cl~ solvated ions. We monitor
the adaptive definition of subsystems along the molecular
dynamics trajectory. Finally, we show an example of a chemical
reaction in the explicit solvent. From a structure close to the
transition state of an Sy 2 reaction of chloroethane with bromide,
we relax the geometry of the system and monitor the Br™ anion

https://doi.org/10.1021/acs.jctc.2c00698
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Value of the cutoff radius of carbon used in the simulation. R., = 4.0 A is adopted in all simulations.

leaving the CH;CH,CI molecule. We also monitor how the
adaptive sDFT driver handles merging and splitting subsystems
along the geometry relaxation.

4.1. Justification for Adaptive sDFT. To exemplify the
need to define subsystems adaptively, we first present the water
dimer as a simple yet instructive example. In panels (a) and (b)
of Figure 4, we show energy curves and forces for the interaction
between two water molecules as one slides past the other. When
the water molecules are too close, the sDFT interaction deviates
strongly from the one computed by KS-DFT of the combined
system. KS-DFT is to be taken as the benchmark method
because it employs the exact noninteracting kinetic energy
functional.

From panel (a) of Figure 4, we notice that the errors involved
in sDFT are substantial, amounting to 2 eV for the geometry
where the two water molecules are closest (the O atoms are
separated only by 1.26 A). While the geometries probed by the
model system in Figure 4 are unlikely to occur in room-
temperature dynamics of water, including liquid water,*® such
errors in the interaction energies are completely unacceptable
when chemical reactions are modeled. Merging the two water
subsystems at around d = +2 A avoids the incorrect behavior of
regular sDFT. Panel (b) of the figure shows that while sDFT
forces deviate substantially from the KS-DFT reference,
adaptive sDFT cures the problem providing forces that are in
good agreement with the KS-DFT benchmark.

In panel (c) of Figure 4, we show the energy profiles for the
simplest of Diels—Alder reactions (butadiene with ethene),
which we run from reactants to products and then back to
reactants along a reaction coordinate (given by a path variable,
s). The reaction coordinate is defined by considering the
geometry of the product molecule (cyclohexene), labeled as g

and the geometry of the reactants (one 1,3-butadiene molecule
and one ethene molecule), labelled as §R. The geometries along

the reaction coordinate are labeled as g(s) and are given by this
equation

) =sg, + (1 —s)g, 0<s<1 (11)

Therefore, we simply vary s from s = 0 to s = 1 to drive the
reaction from reactants to products and then we follow the
reverse path from s = 1 to s = 0 to go back to the reactants. We
carry out such simulation employing three different choices of
the cutoff radius of carbon. From the figure, we see that when the
cutoff radius is chosen to be 0.9 A (the smallest considered),

6651

there are large, unacceptable energy deviations nearby the
transition state. When the radius is set to 1.2 A, the deviations
between the KS-DFT and the adaptive sDFT energies are
reduced to a very small and acceptable level.

It is instructive to point out that the effects of the “switching
region” used in adaptive sDFT (i.e., the § = 0.2 A threshold, see
Section 2) are slightly visible in Figure 4. Specifically, the lhs of
the curves (both energies and forces) slightly differ from their
rhs. Of course, it is possible to further reduce the (already small)
discrepancy between adaptive sDFT and the KS-DFT bench-
mark, by further adjusting the values of the thresholds d and A.

We remark that the computational cost of the simulations
after a subsystem merge event does not deteriorate dramatically
unless the subsystems involved are of similar size as the full
system. This is because, generally, subsystems are small in size
compared to the full system, and the combination of two
subsystems leads to still a small subsystem.

4.2. Moderate Interactions: NaCl in Water. In this
example, see Figure S, we carry out a computational experiment
whereby a NaCl molecule is solvated by water constraining the
Na—Cl distance to dy,_c = 2.36 A. After geometry relaxation of
the water molecules only, the system is propagated along a
Born—Oppenheimer dynamics trajectory for 12 ps. The atom’s
velocities are regulated by the Andersen thermostat’® with
temperature set to T = 373 K. The elevated temperature is
chosen to allow for a faster dynamics.

Along the trajectory, we expect the NaCl molecule to
dissociate to solvated ions, Na(,q)" and Cl(,p)". The adaptive
sDFT dynamics driver initially determines that Na and Cl
should belong to the same subsystem (their initial distance
dna—c1 is shorter than the A + § threshold, see Section 2 for
details). For similar reasons, some water molecules nearby the
NaCl molecule are also included in the NaCl subsystem.

In Figure 6, we depict the variability of the number and nature
of the subsystems involved. From the split/merge inset of Figure
6 is interesting to note that the sodium and chloride go back and
forth belonging to the same or separate subsystems until around
step 7000 (or 7 ps in time) when they finally dissociate and
diffuse away from each other.

We use the NaCl system also for a secondary purpose, testing
adaptive sDFT’s ability to conserve energy in a 500-step NVE
Born—Oppenheimer dynamics. Figure 7 shows the potential
and total energy for the NaCl system along a NVE dynamics.
Because the energy functional is redefined after each split and
merge events, vertical jumps in the total energy are expected. It is
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Figure 5. One snapshot of a Born—Oppenheimer dynamics of NaCl in
water. The chloride and sodium subsystems are represented by the
transparent green and blue spheres, respectively. The spheres indicate
that several water molecules are automatically included in the
subsystems (4 for CI” and 5 for Na* in this snapshot).

important to show that the energy is conserved (negligible
slope) in between the split/merge events. From the figure, we
can also see that the overall energy drift is still very small in the
order of a few meV/atom/ps, which is acceptable.

The discussed NVE dynamics also shows that it is possible to
employ the proposed adaptive sDFT dynamics algorithm in
nuanced simulations that may rely on an accurate energy
functional, such as free-energy calculations. However, caution is
required as the proposed algorithm can and will be improved,
specifically in the definition and handling of the switching region
in future iterations.

4.3. Strong Interactions: A Sy2 Reaction in Water.
sDFT was conceived to model chemistry in explicit environ-
ments.*”*>”’~7" However, modeling chemical reactions by
sDFT is difficult in practice because, as mentioned before, when
two or more subsystems come too close to each other and their
electron density overlap strongly (a situation needed when
chemical reactions occur), the NAKE functional approximants
typically employed by sDFT are not accurate enough to provide
a qualitative description of the interactions. Thus, the adaptive
version of sDFT presented here is expected to open the door to
sDFT models of chemical reactions.

As proof of principle, we choose a simple Sy2 reaction of
chloro/bromoethane interacting with chloride/bromide nucle-
ophiles in aqueous solutions. Even though water is a bad solvent
for Sy2 reactions, it has been studied nonetheless due to the
large sizes of the resulting activation energies, as well as the
strong solvent effect.”” We consider Figure 8 where we present
the electronic energy as a function of step number along a
geometry optimization carried out with adaptive sDFT. The
chosen system is the transition-state structure of the
nucleophilic Sy2 reaction of chloroethane with bromide, in
water with one sodium counterion. Upon optimization, the
structure relaxes away from the transition state toward one of the
two possible products. In the example, the products reached by
the relaxation are aqueous chloroethane and aqueous bromide.

The figure shows that during the relaxation, there are four
subsystem merge/split events (indicated by stars in the plot).
Particularly, the chloroethane/bromide split event is the third
event occurring around step 10. In that event, the first solvation
shell of water is also split between the two subsystems, indicated
in the figure by oxygens changing label color. It is interesting to
note that the transition-state energy of about 1.3 eV matches
well early predictions.”’

5. CONCLUSIONS

In conclusion, we have developed a fully automated, adaptive
definition of subsystems for subsystem DFT simulations. A new
method cures a longstanding issue in practical subsystem DFT
simulations, that is, the inaccurate predictions when two
subsystems interact strongly. The adaptive definition is such
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Figure 6. Variable number and nature of subsystems along a 12 ps sSDFT Born—Oppenheimer trajectory of solvated, dissociating NaCl in water. Total:
the (variable) total number of subsystems along the trajectory. Cl(Na)+nH,O: number of water molecules in the subsystem that includes the Cl (Na)
atom along the trajectory. Initially, Na and ClI belong to the same subsystem; therefore, the two graphs are identical until Na and Cl split into two
different subsystems. Split/Merge: subsystem split and merge events for the Na and Cl atoms. After 7000 steps (7 ps), Na and Cl diffuse away as Na(,)*

and Cl(aq)_.
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Figure 8. Adaptive sDFT geometry relaxation of the chloroethane/
bromide Sy2 reaction transition state in water. The explicit water
molecules shown in the figure are the ones that are included in the
chloroethane (red oxygen atoms) and bromide (yellow oxygen atoms)
subsystems. The points indicated by the star markers indicate the steps
when a subsystem split or merge event takes place. The color labels are
as follows: hydrogen: white; bromide/bromine: brown; sodium:
purple; oxygen: red or yellow; and carbon: gray.

that when subsystems are spatially close (and interact strongly),
they are merged into a single subsystem. Vice versa, when two
fragments belonging to the same subsystem move away from
each other, the method automatically splits them into two new
subsystems. The method operates at run time (i.e, no
executables are started and stopped during a simulation) and
takes full advantage of MPI communicators. For example, when
two subsystems are merged, the sum of the MPI tasks used for
each of the original subsystems is assigned to the combined
subsystem. “Merge” and “split” operations are encoded in a
quasi-black box method that we show to be efficient and robust.

We considered two examples to showcase the usefulness of
the adaptive subsystem DFT method: a 12 ps dynamics of the
dissociation of NaCl in water and a geometry relaxation from the
transition state down to the products of a prototypical Sy2
reaction in water. In both cases, we show that the number of
subsystems in the simulation changes adaptively yielding
physical predictions. A strict benchmark on a weakly-to-strongly
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interacting water dimer and Diels—Alder reaction model
systems reveals that adaptive subsystem DFT is essentially as
accurate as KS-DFT of the combined supersystem for both
energies and forces.

In sum, we foresee adaptive subsystem DFT to become the
new state of the art subsystem DFT simulation method, opening
the door to modeling condensed phase chemical reactions with
subsystem DFT and therefore increasing the applicability of
DFT to even more realistic model systems than it has been
possible till date.
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