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1.  Introduction

Kohn–Sham density functional theory (KS-DFT) [1, 2] is the 
most widely used quantum mechanical method for obtaining 
the electronic structures of condensed matter and plays a cru-
cial role in understanding the physical and chemical proper-
ties of complex materials at the microscopic level. However, 
the solution of the Kohn–Sham equation  requires solving a 
nonlinear eigenvalue problem. The traditional self-consistent 
field (SCF) approach using iterative diagonalization is the 
most popular method for solving the KS-DFT equation and 
has been implemented in several packages, including VASP 
[3, 4], ABINIT [5], CASTEP [6], and Quantum Espresso [7], 

which have been used to simulate systems comprising a few 
hundred atoms. In practice, a large-scale simulation of compli-
cated structures (e.g. heterointerfaces, dislocations) modeled 
by a big unit cell containing thousands of atoms are required 
sometimes. The traditional SCF method typically exhibits an 
inherent cubic scaling behavior, making large-scale simula-
tions prohibitive [8]. Furthermore, the KS-DFT equation must 
be solved a large number of times for practical applications of 
density functional theory (DFT) simulations for dynamic pro-
cesses, such as structure relaxation and molecular dynamics 
simulations. Therefore, there is an urgent need to develop an 
efficient KS equation solution strategy to reduce the compu-
tational cost in the framework of the DFT method for large-
scale simulations.

Research has focused on developing efficient DFT methods 
whose computational costs scale linearly as a function of the 
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number of atoms. In these methods, truncated localized basis 
sets, such as atomic and pseudo-atomic orbitals, wavelets, 
or B-spline functions, coupled with the divide-and-conquer 
scheme [9–13] have been introduced to extend the applica-
bility and increase the accessible length scales of DFT to large-
scale systems [14]. There are numerous software packages 
(e.g. ONETEP [15, 16], CONQUEST [17, 18], QUICKSTEP 
[19], and BigDFT [20, 21]) in the framework of linear scaling 
methods that have increased the maximum system size con-
siderably to many thousands of atoms [14, 22]. Currently, the 
reduced-scaling methods combined with the availability of 
high-performance computing resources make million-atom 
DFT computations affordable, while maintaining the same 
accuracy as the traditional cubic scaling approaches [14, 22]. 
However, these methodologies using the truncated localized 
basis sets depend on the possibility of localizing KS orbitals 
or short-range density matrices; thus, their applications to 
metallic systems have been limited [14, 22].

The pole expansion and selected inversion (PEXSI)  
[23, 24] technique provides an alternative strategy for effi-
ciently solving the KS equation without using a diago-
nalization procedure. The computational cost of the PEXSI 
technique scales at most as O(N2) for general 3D bulk sys-
tems. The technique has been implemented in several DFT-
based packages, including SIESTA-PEXSI [25] and ABACUS 
[26], and has been applied to simulations of systems com-
prising thousands of atoms. However, it is usually more dif-
ficult to achieve a good load balance and memory distribution 
in inverse algorithms [27].

Recently, the Chebyshev-filtered subspace iteration 
(CheFSI) [28, 29] method has been proposed to solve the 
KS-DFT equation. In this approach, the explicit eigenvec-
tors of the intermediate linearized KS eigenvalue problems 
are replaced by approximate basis vectors of a progressively 
refined subspace, leading to the substantial reduction of the 
diagonalization cost and allowing large-scale simulations 
with currently available computing resources. The method has 
been implemented in several DFT-based packages, including 
PARSEC [29], RESCU [27], and SPARC [30, 31], and has 
been applied to simulations of large-scale systems containing 
thousands of atoms on a modest computer cluster.

In this work, a combination of the real-space finite-dif-
ference formulation [32] and CheFSI method introduced by 
Zhou et al [28] was used to solve the KS-DFT equation for 
periodic systems and was implemented in our DFT-based 
package, Ab initio Real-space Electronic Structure software 
(ARES), with sequential and parallel architectures. The reli-
ability of ARES has been benchmarked by numerical simula-
tions for a wide variety of condensed matter, encompassing 
metals, semiconductors, and insulators. The simulated results 
demonstrate that ARES can substantially reduce the compu-
tational cost of DFT simulations in a periodic system without 
sacrificing accuracy.

The remainder of this manuscript is organized as follows. 
Section 2 briefly introduces KS-DFT and details of the imple-
mentation of the ARES package. In section 3, we present the 
results of testing on crystalline systems to demonstrate the 

computational stability, accuracy, and efficiency of ARES. 
Finally, conclusions are presented in section 4.

2. Theory and implementation

2.1.  Kohn–Sham theory

We briefly introduce the equations  of KS-DFT for elec-
tronic structure calculations. Note that atomic units 
(e = � = me = 1) are used throughout this paper. The central 
task in KS-DFT calculation is solving the KS equation [2],

ĤKSψi(�r) = εiψi(�r),� (1)

where ψi and εi are the ith KS eigenfunctions and eigenvalues, 
respectively. The KS Hamiltonian, HKS, is given by

ĤKS = −1
2
∇2 + V̂H[ρ] + V̂XC[ρ] + V̂ion,� (2)

where V̂H, V̂XC, and V̂ion are the Hartree potential, exchange-
correlation potential, and ionic potential, respectively. The KS 
Hamiltonian depends on the electronic density, ρ(r), which 
can be determined from the occupied KS orbitals (spin degen-
eracy is assumed here) as

ρ(�r) = 2
Occ.∑
i=1

|ψi(�r)|2.� (3)

Considering crystalline systems under Bloch periodic 
boundary conditions, the KS eigenfunctions in equation  (1) 
then become

ψn,�k (�r) =
1√
Nk

ei�k·�run,�k (�r) ,� (4)

where Nk is the number of k-points in the Brillouin zone, 
which is typically equivalent to the number of unit cells 
in the Born von Karmen (BvK) supercell under periodic 
boundary conditions. Here, the normalization of wavefunc-
tions is over the BvK cell. un,�k(�r) is a periodic function 
on the lattice and the normalization is over the unit cell, 
1

Nk

´
V

∣∣∣un,�k(�r)
∣∣∣
2
d3r =

´
Ω

∣∣∣un,�k(�r)
∣∣∣
2
d3r = 1. V = NkΩ is the 

BvK cell volume, where Ω is the volume of the unit cell. The 
electron density can be computed as

ρ (�r) =
1

Nk

∑
�k

Ns∑
n=1

fn,�k

∣∣∣un,�k (�r)
∣∣∣
2
,� (5)

where fn,�k  is the Fermi–Dirac occupation function. 
Equation (1) can be written as

Ĥ�k[ρ]un,�k = εn,�kun,�k n = 1, 2, . . . , Ns;�k = �k1,�k2, . . . ,�kNk ,
� (6)
where εn,�k  are eigenvalues of the k-point-dependent KS 
Hamiltonian

Ĥ�k[ρ] := −1
2

Å
∇2 + 2i�k · ∇ −

∥∥∥�k
∥∥∥

2
ã
+ V̂H[ρ] + V̂XC[ρ] + V̂loc + V̂�k

nl.

� (7)
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It is necessary to determine the ground electron density 
from the self-consistent solution of the KS equations  in 
equations  (5)–(7). First, equation  (7) uses the initially esti-
mated charge density to yield a set of k-point-dependent 
Hamiltonians. Second, the solution of equation  (6) with the 
current Hamiltonians (equation (7)) is used to obtain the 
eigenvalues and corresponding set of eigenfunctions (wave 
functions). Then, the new charge density can be evaluated 
using equation (5). This process is repeated until the variation 
of the electron density is smaller than the given tolerance. The 
most expensive step in the process is obtaining the eigenpairs 
(eigenvalues and eigenstates) by solving equation (6).

2.2.  Real-space representation of Kohn–Sham equation

Real-space representations can effectively simplify the 
application of localization constraints [34]. In the represen-
tations, the wave functions and potentials are directly evalu-
ated on real-space grid points. Accordingly, the Hamiltonian 
in equation (7) is discretized on real-space uniform grids as 
an Nb × Nb matrix, where each eigenfunction is a Nb × 1 
size vector with Nb denoting the total number of real-space 
grids. Although the Hamiltonian matrix within a real-space 
representation of the KS equation is larger than that in other 
basis-dependent approaches, the Hamiltonian matrix is dis-
cretized to be a spare matrix whose nonzero elements are 
confined within a diagonal band. The extent of the nonzero 
elements in the off-diagonal positions only depends on the 
order of the finite difference expansion of the kinetic energy 
operator.

The Laplacian and gradient operator for the kinetic term 
in the Hamiltonians in equation  (7) can be represented by 
finite difference expansion, discretized into a sparse matrix 
[35]. The general form of the Laplacian operator on a non-
orthorhombic grid is given by [33]

∇2 =
6∑

i=1

fi
∂2

∂x2
i

.� (8)

The Laplacian form is represented by a combination of deriva-
tives along the following six directions, {x̂i}: three along the 
original lattice vectors and three additional derivatives in the 
nearest-neighbor directions. For an orthorhombic grid, the 
Laplacian form is reduced to three vectors along the original 
lattice vectors. The coefficients, fi, in equation  (8) refer to 
[33]. The gradient operator on a non-orthorhombic grid is 
given by

∇ = êx

3∑
i=1

BT
1i

∂

∂xi
+ êy

3∑
i=1

BT
2i

∂

∂xi
+ êz

3∑
i=1

BT
3i

∂

∂xi
,� (9)

where matrix B is the inverse of normalized lattice matrix 
Ã = [â1, â2, â3], âi =

ai
‖ai‖. The mth (m = 1, 2) derivative 

along the x̂i direction can be approximated by the expansion 
of the high-order finite difference as

∂m

∂xm
i

u(xi) ≈
Nord∑

n=−Nord

Cm
n

hm
i

u(xi + nhix̂i),� (10)

where Nord and hi are the order of the finite-difference expan-
sion and spacing of the grid along the x̂i direction, respec-
tively. The coefficients of Cm

n  are available in [36, 37].
The potential term in equation (7) consists of the Hartree 

potential, V̂H[ρ], the exchange-correlation potential, V̂XC[ρ], 
the local ionic pseudopotential, V̂loc, and the non-local ionic 

pseudopotential, V̂�k
nl. The first three potential terms only con-

tribute to the leading diagonal of the Hamiltonian matrix in 
real-space representation.

The Hartree potential is given by solving the Poisson equa-
tion as [38]

∇2VH[ρ](�r) = −4π[ρ(�r)− ρ0].� (11)

Where ρ0 is average electron density of the system. Both real-
space and fast Fourier transform (FFT)-based calculations of 
the Hartree potential are adopted in ARES. However, the com-
putational cost of the FFT-based method is lower than that of 
the real-space method for periodic systems [39]. Therefore, 
the FFT-based method was also employed in this work.

The exchange-correlation potential is estimated by

VXC[ρ](�r) =
δEXC[ρ]

δρ(�r)
,� (12)

where EXC[ρ] is the exchange-correlation energy functional. 
Currently, two typical exchange-correlation functionals of 
local density approximation (LDA) [40] and Perdew–Burke–
Ernzerhof generalized gradient approximation (GGA) [41] 
have been implemented. The other exchange and correlation 
functionals, such as LDA, GGA, and meta-GGA functionals 
available from LibXC [42], can also be easily interfaced with 
ARES as required.

The ionic potential is used to described the ion–electron 
interaction by the norm-conserving pseudopotential [43], 
which is given by

V̂ion = V̂loc + V̂nl,� (13)

where Vloc and Vnl are the local and nonlocal parts of the 
pseudopotential, respectively. The Kleinman–Bylander form 
[44] used for the nonlocal part is given by

V̂nl =

Na∑
a=1

∑
lm

1
V̄a

lm
|χa

lm〉 〈χa
lm|,� (14)

where |χa
lm〉 〈χa

lm| is the non-local projectors corresponding 
to the angular momentum number, lm, of the ath atom. The 
norm-conserving Troullier–Martins pseudopotential [45] in 
the Kleinman–Bylander form has been implemented in the 
ARES package. The local part of the pseudopotential can be 
obtained by

Vloc(�r) = FFT′




Ntype∑
t=1

St(G)Vt
loc (|G|)


 ,� (15)

where FFT′[·] denotes the reverse Fourier transform. Ntype is 
the number of atomic species, and St(G) and Vt

loc (|G|) are the 
structure factor and 1D Fourier component of the local pseudo
potential of the tth type atom, respectively. More details about 
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the local part of the pseudopotential can be found in [8]. The 
nonlocal part of the pseudopotential is given by

V̂�k
nlun,�k = e−i�k·�r

Na∑
a=1

∑
lm

χa
lm(�r)
V̄a

lm

ˆ
χa

lm(�r
′
a)e

i�k·�r′un,�k(�r
′)d3r′.

� (16)
Where �ra = �r − �Ra. In addition, the local pseudopotentials 
[46–48] with high accuracy and transferability for elements 
can also be used in ARES.

2.3.  CheFSI Method

The electronic structure calculations in DFT a large number 
of eigenpairs to be obtained for the KS equation. However, 
only the eigenpairs with energies within a small window 
inside the spectrum of H�k  are needed. Chebyshev polyno-
mials efficiently extract the subspace projection onto the 
target space of wanted eigenvectors associated with the 
occupied states [28, 49]. Recently, the well-established 
CheFSI method has been used to solve the KS equation with 
5–10 times faster SCF iteration than the eigensolver-based 
method [28]. Therefore, this method was also employed in 
ARES package.

In our implementation, the first type of Chebyshev poly-
nomial is used to extract the required invariant subspace. The 
Chebyshev polynomials with m-degree, denoted as pm, are 
defined by the three-term recurrence,

pm+1(x) = 2xpm(x)− pm−1(x), x ∈ R.� (17)

Note that p0(x) = 0, p1(x) = x.
A remarkable property of Chebyshev polynomials is rapid 

growth outside the interval [−1, 1]. Note that the detailed 
descriptions of CheFSI method can be found in [28]. Generally, 
it is assumed that the full spectrum of the Hamiltonian (σ(H�k)) 
is located in [a0, b], whereas the spectrum of the wanted eigen-
vectors is bounded within [a0, a]. a should be larger than a0 
but smaller than b, whereas b should be greater than the upper 
bound of σ(H�k). In the CheFSI method, the interval of the 
spectrum [a, b] is dampened by affine mapping of [a, b] into 
[−1, 1],

H′
�k
=

H�k − c
e

; c =
a + b

2
, e =

b − a
2

.� (18)

Then, the new filter is denoted by

Pm(H�k) = pm(H′
�k
).� (19)

Lower bound a and upper bound b of the unwanted spectra 
play a pivotal role in this method. In our implementation, the 
upper bound can be estimated by a few steps of the Lanczos 
algorithm [50], and the largest Rayleigh–Ritz value of the pre-
vious iteration is used as the lower bound.

The details of the filtering processes are as follows.

	(1)	� The desired subspace, which corresponds to occupied 
states, is constructed by Chebyshev polynomial filtering, 
where the components of the wanted spectrum are assur-
edly magnified with respect to the components of the 
unwanted spectrum,

ŨF
�k
= Pm(H�k)Ũ�k,� (20)

		 where the matrix Ũ�k ∈ CNb×Ns contains Ns column dis-

crete vectors ũn,�k . ŨF
�k
∈ CNb×Ns denotes the filtered basis 

of the new subspace.
	(2)	�The Ritz pairs approximating the exact diagonalization 

solutions are evaluated by subspace diagonalization using 
the generalized Rayleigh–Ritz approach,

		 (Ũ�k, ε�k) = Rayleigh_Ritz(H�k, ŨF
�k
). The detailed proce-

dure is shown in algorithm 1 [27].

2.4.  Implementation of ARES

2.4.1.  Solving the KS equation using Chebyshev filtering.  The  
flow chart of the ARES process used to solve the KS equa-
tion using Chebyshev filtering is shown in figure 1. The pro-
cess comprises five main steps. First, the initial estimated 
electron density and the subspace are generated and used to 

Figure 1.  Flow chart of the SCF calculation in ARES.

Algorithm 1.  Procedure for the Rayleigh-Ritz scheme.

Rayleigh_Ritz (H, Ũ)

  Compute the projected Hamiltonian H̄ = Ũ†HŨ

  IF Ũ†Ũ �= I  THEN

    Compute the overlap matrix S̃ = Ũ†Ũ

    �Diagonalize H̄Q = S̃QΣ, where Q contains the 
eigenvectors of H̄ , diagonal part of matrix Σ contains 
the Ritz values of H , denote as diag(Σ)

  ELSE

    Diagonalize H̄Q = QΣ

  END IF

  Rotate the basis Ũ = ŨQ

Return the basis and eigenvalues Ũ, diag(Σ)

J. Phys.: Condens. Matter 31 (2019) 455901
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estimate the Rayleigh–Ritz values and the initial bounds of 
the unwanted spectrums. Second, Chebyshev polynomial fil-
tering is performed to obtain the desired subspace based on the 
previous subspace. Third, the Rayleigh–Ritz step is performed 
to evaluate the approximate eigenpairs. Fourth, the new Ham-
iltonian is constructed by updating the charge density. Note 
that the Pulay mixing [51] with Kerker preconditioning [52, 
53] scheme for mixing the charge density is used to acceler-
ate the SCF convergence. Fifth, the lower and upper bounds 
of the unwanted spectrum are determined by maximum Ritz 
value and the Lanczos algorithm. The self-consistent iteration 
step progressively approximates the wanted eigensubspace of 
the Hamiltonian and is repeated iteratively until a termination 
criterion, such as a prescribed error threshold for the charge 
density and total energy, is attained.

Estimating the initial subspace is a critical step to deter-
mine the numerical stability and convergence rate for solving 
the KS equation using the CheFSI method. The initial sub-
space generation scheme originally proposed by Zhou et  al 
requires solving for the eigenvectors of the initial Hamiltonian 
[28], which is a major problem for large-scale simulations. It 
was later demonstrated that a random initial subspace is more 
efficient [49]. Recently, initial subspace generation schemes 
using the extended Hückel (EH) method [54] or numerical 
atomic orbitals (NAOs) with a one-shot Rayleigh–Ritz step 
[27] have also been proposed.

Compared with the EH method, the method combining 
NAOs with the Rayleigh–Ritz scheme is easy to implement. 
Therefore, we also employed the NAO method to generate 
the initial subspace in ARES. However, this technique is 
very memory consuming for systems containing thousands 
of atoms because the number of NAOs used to construct the 
subspace is usually more than ten times the number of atoms. 
Furthermore, the technique is inefficient for large systems 

because the Rayleigh–Ritz scheme requires diagonaliza-
tion of a large matrix, whose dimensions are the same as the 
number of NAOs. Although the direct truncation scheme of 
NAOs (DTNAO) provides a possible solution to overcome the 
shortcomings of the NAO method, the operations usually miss 
a part of the energy spectrum, leading to slow convergence 
(figure 2).

Here, a new scheme called Slater-type orbital combina-
tions (STOC) is proposed to generate the initial subspace for 
large-scale systems. In this scheme, all the Slater-type orbitals 
(STOs) as one of NAOs are selected and linearly combined 
to be the basis of the subspace. The combination opera-
tion reduces the dimension of the subspace (Ns). Note that 
the number of STOs (NSTO) is greater than Ns, therefore, the 
STOC scheme is less memory consuming than the previous 
NAOs [27]. Furthermore, the new scheme reduces the spec-
trum loss because all the STOs are included.

The details of the generation of the initial subspace using 
the STOC are presented in algorithm 2. The NSTO STOs are 
mapped to the basis of the subspace one by one; thus, the 
interpolation index of the basis periodically returns to the 
first basis vector when the index exceeds Ns, which is mean-
ingful for describing orbital hybridization. We select a large 
system containing 1024 Si atoms to evaluate the effectiveness 
of STOC. The number of steps for convergence as a func-
tion of various initialized subspace generation schemes and 
the Chebyshev filter degree are shown in figure 2. The STOC 
and NAO schemes are more efficient than DTNAO and the 
number of steps for convergence for the STOC scheme is 
comparable to that for the NAO method when the Chebyshev 
polynomial degree is larger than 16. Since the STOC scheme 
is less memory consuming, it is suitable for large-scale 
simulations.

2.4.2.  Structural geometry relaxation.  One major application 
of theoretical simulations is geometrical relaxation, which 
determine the atomic configuration with minimum energy on 
the Born–Oppenheimer energy surface. Generally, the force 

Figure 2.  Number of iterations required to converge the total 
energy of a unit cell containing 1024 Si atoms as a function of 
various initialized subspace generation schemes and Chebyshev 
filtering degree.

Algorithm 2.  Initialize subspace by STOC.

Initilize_subspace (Hint)

  Define a CNb×Ns matrix U = [u1, u2, . . . , uNs ] = 0
  i = 1, j = 1
  WHILE i � NSTO DO

    IF ( j > Ns) set j = 1
    �uj = uj + φSTO

i , combination of orbitals, where φSTO
i  is 

the ith STO
    j = j + 1 i = i + 1

  ENDDO
  �Rayleigh-Ritz step (Uint, e) = Rayleigh_Ritz(Hint, U), 

where Uint is the initial subspace and e contains the Ritz 
values of Hint

  �Lower bound a = max{e} and upper bound b is evaluated 
the Lanczos algorithm [50]

Return Uint, a, b

J. Phys.: Condens. Matter 31 (2019) 455901
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on each atom in relaxed structures should be close to zero. The 
forces on nuclei are related to the first derivatives of the total 
energy with respect to the nuclear coordinates. Generally, the 
total energy functional explicitly depends on the atomic posi-
tions and lattice matrix on the Born–Oppenheimer surface,

Etot[R] = Ts[U] + EH[ρ] + Exc[ρ] + Eloc
i−e[ρ, R] + Enl

i−e[U, R] + Ei−i[R],
� (21)
where Ts[U], EH[ρ], Exc[ρ], Eloc

i−e[ρ, R] and Enl
i−e[U, R] are the 

non-interacting kinetic energy, the Hartree potential energy, 
the exchange correlation energy, the local- and nonlocal- part 
of ion–electron interaction energy, respectively. Ei−i[R] is the 
ion–ion interaction energy, which can be calculated by Ewald 
summation [55–57].

The Hellmann-Feynman force on the ath atom is given by

�Fa = −∂Etot[R]
∂�Ra

= −∂Eloc
i−e[ρ,R]

∂�Ra
− ∂Enl

i−e[U,R]

∂�Ra
− ∂EEwald[R]

∂�Ra

= �Floc
a + �Fnl

a + �FEwald
a

�
(22)

where �Flocal
a  and �FEwald

a  are the contribution from the local ionic 
potential and Ewald force [57], respectively. The nonlocal 
force expression of �Fnl

a  is given by

�Fnl
a,i−e = −

∂Enl
i−e[U, R]

∂�Ra

= 2Re




∑

n,�k

fn,�k

∑
lm

1
V̄a

lm
G∗

n�k,alm

ˆ
dχa

lm(�ra)

d�ra
ψ

n,�k
(�r)d3r



 ,

�
(23)

where Gn�k,alm =
´
χa

lm(�ra)ψn,�k(�r)d
3r.

Currently, several well-established local optimization 
algorithms (e.g. steepest descent, conjugate gradient, quasi-
Newton, and Fast Inertial Relaxation Engine) are available. 
Our previous study demonstrated that the improved limited-
memory quasi-Newton (L-BFGS) method only requires 
limited computer memory and yields significantly faster conv
ergence for large-scale geometrical structure relaxation [58]. 
Thus, L-BFGS was also used in the ARES package.

2.4.3.  Parallel implementation.  ARES is intended to simulate 
large-scale systems. Therefore, it is highly desirable to imple-
ment a parallel scheme in ARES to take full advantage of the 
massive parallelization. In our parallelization scheme, the par-
allel mode uses the standard message passing interface library 
for communication, and all the terms of the Hamilton on the 
real-space grids are implemented using the spatial decomposi-
tion, where the 3D domain is divided into a 2D block distri-
bution. We expect ARES to be highly efficient because less 
communication is required between the processors owing to 
the short-range operations referring to real-space finite dif-
ference expansion. Furthermore, the ScaLAPACK interface 
is also used to harness the computational power of the cores 
efficiently.

3.  Numerical results

To evaluate the accuracy, computational efficiency, and par-
allel scaling of ARES, we use it to simulate a wide variety 

of materials, including metals, semiconductors, and insula-
tors. All the calculations use the LDA for electron exchange 
and correlation as parameterized by Perdew and Zunger [40]. 
The electron–ion interaction of Al, Si, Mg, Ga and As was 
described by local pseudopotentials available from the web-
site [59]. The electron–ion interaction of B, C, N, O and Zn 
was described by norm-conserving Troullier–Martins pseudo
potentials with 2s22p 1, 2s22p 2, 2s22p 3, 2s22p 4 and 3d104s2 
configurations treated as the valence electrons. The B, C, 
N and O have the core cutoff radii of 1.39, 1.60, 1.50 and 
1.30 bohr for s- and p-channels, respectively. The Zn has the 
core cutoff radii of 2.28 bohr for s-, p - and d-channels. All 
the Troullier–Martins pseudopotentials are available from the 
website [60].

3.1. Tests of ARES convergence

The order of finite-difference expansion and the grid spacing 
are the controllable real-space finite-difference parameters in 
ARES that critically affect the accuracy of the calculations. 
These parameters are selected depending on the convergence 
test of the total energies of the systems. Here, we describe 
how to select the values of these parameters in practice. We 
run the ARES code to calculate the total energy for crystalline 
Al, Si and C. Just as shown in figure 3, the 16th-, 16th- and 
10th-order finite-difference expansion with the grid spac-
ings of 0.32, 0.22 and 0.12 Å are sufficient for a well-conv
erged total energy (less than 1.0 meV/atom) for Al, Siand C, 
respectively.

The Chebyshev polynomial degree (m) and the number of 
computed eigenstates (Ns) are the two critical parameters for 
the CheFSI method implemented in ARES to determine the 
convergence rate. Here, crystalline silicon containing 1024 
atoms is used to assess the convergence rate of these param
eters. The density residual depending on the Chebyshev poly-
nomial degree is shown in figure 4(a). The Chebyshev filter 
degree of 16 gives good convergence for crystalline silicon. 
Generally, Ns should be greater than the number of occupied 
states, Nocc, to avoid missing occupied eigenstates during 
the filtering [27, 28]. Here, we also test convergence rate 
depending on the number of computed eigenstates using crys-
talline silicon containing 1024 atoms. Figure 4(b) shows the 
number of iterations required for convergence of the density 
as a function of the number of extra eigenstates Nextra relative 
to the number of atoms. The addition of 10% extra unoccu-
pied states results in a fast convergence (14 steps) for crystal-
line silicon.

3.2.  Computational accuracy

We verify the computational accuracy of ARES by comparing 
the crystalline bulk properties of several elements and binary 
and ternary compounds with those determined using the 
CASTEP package. The total energy versus volume equation of 
states of Al with a face-centered-cubic (FCC) structure and Si, 
C with a cubic diamond (CD) structure are obtained using the 
ARES and CASTEP software with the same pseudopotentials. 
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Figure 3.  Convergence test for ARES. Effect of grid spacing h and the order of finite-difference approximation Nord on the total energy of 
supercell FCC Al containing 64 atoms (a) and (b), supercell FCC Si containing 256 atoms ((c) and (d)) and C with CD structure containing 
2 atoms (e) and (f). Note that only the gamma point is used for simulations of Al and Si, while 8 × 8 × 8 k-meshes are employed for 
simulation of C.

Figure 4.  (a) Dependence of density residual on Chebyshev polynomial degree (m). (b) Dependence of number of iteration steps on the 
number of extra eigenstates relative to the number of atoms.

J. Phys.: Condens. Matter 31 (2019) 455901
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In figures  5(a)–(c), we plot the energy as a function of the 
volume. There is an excellent agreement between ARES and 
CASTEP, with the curves being practically indistinguishable. 
We find that the calculated equilibrium volume (V0), equilib-
rium energy (E0), and bulk modulus (B0) obtained using ARES 
are consistent with the CASTEP data, and their differences 
are within 0.05%, 0.5 meV/atom, and 1.0%, respectively. The 
theoretical V0 and B0 are estimated by fitting the total energies 
as a function of volume to the Murnaghan equation of states 
[61]. Further validation of the numerical stability of ARES is 
also given by comparing the total energies of ten GaAs struc-
tures calculated using ARES and CASTEP. These structures 
are randomly generated by the CALYPSO package [62, 63]. 
The results in figure 5(d) show identical energy differences for 
the two sets, validating the numerical stability of ARES further.

The binary and ternary compounds of BN, ZnO, and 
MgSiO3 with complex structures are used to evaluate the 
computational accuracy of the ARES software further. The 
calculated V0, E0, and B0 values using ARES and CASTEP 
are presented in table 1. Our results are in excellent agreement 
with that obtained by CASTEP, which supports the validity 
of the ARES software. Note that the structural details of BN, 
ZnO, and MgSiO3 are listed in table 2.

We compare the band structures of Al, Si, C, and GaAs cal-
culated using ARES and CASTEP. We use the W–L–Γ–X–K  
bands, whose reciprocal lattice vector coordinates are [0.5 
0.25 0.75], [0.5 0.5 0.5], [0.0 0.0 0.0], [0.5 0.0 0.5], and 
[0.375 0.375 0.75], respectively. We discretize each line to a 
set of k-points and determine the band structures using ARES. 
Figure 6 shows the comparisons of the calculated band struc-
tures by ARES and CASTEP. Obviously, the two calculations 
give nearly identical band structures, HOMO eigenvalues, 
LUMO eigenvalues, and bandgaps, demonstrating the acc
uracy of ARES.

Figure 5.  Comparison of the equation of states for (a) Al FCC, (b) Si CD, and (c) C CD obtained using ARES and CASTEP. (d) Relative 
energy differences between the structure with the lowest energy for all the structures considered and another nine structures of GaAs 
generated by CALYPSO. Note that the 18 × 18 × 18, 8 × 8 × 8, and 8 × 8 × 8 k-meshes used for Al, Si, and C give energy convergences of 
less than 1.0 meV/atom. The grid spacings are 0.20, 0.20, 0.10, and 0.20 Å in ARES and the kinetic cutoff energies are 940, 940, 2600, and 
940 eV in CASTEP for Al, Si, C, and GaAs, respectively.

Table 1.  Comparison of bulk properties of BN, ZnO, and MgSiO3 
obtained using CASTEP and ARES software.

Systems Software
V0  
(Å3/cell)

E0  
(eV/atom)

B0 
(GPa)

BN CASTEP 69.771 −175.547 250.0
ARES 69.848 −175.549 248.8

ZnO CASTEP 93.561 −974.118 188.6
ARES 93.455 −974.117 185.9

MgSiO3 CASTEP 394.124 −290.001 226.7
ARES 393.530 −290.000 218.2
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3.3.  Computational efficiency

To evaluate the computational efficiency of the parallel ARES 
package, static simulations of the supercell structures of Al 
containing different numbers of atoms are performed using 
16, 64, and 256 processors. The total wall time per self-
consistent step of supercell Al as a function of the number 
of atoms is presented in figure 7(a). The scaling with respect 

to the number of atoms for ARES is approximately qua-
dratic O(N2.22). The calculations are performed using the 
high-performance Tianhe-2 supercomputer at the National 
Supercomputer Center of Guangzhou, where each node con-
tains two 12-core Intel Xeon E5-2692 v2 CPUs with 128-GB 
memory with a maximum interconnect speed of 160 GBps.

To illustrate the parallel scalability of ARES, we perform 
a static calculation of a supercell of the diamond structure 

Table 2.  Structural details of BN, ZnO and MgSiO3.

Systems Space group (number) Lattice parameters Element Wykoff position

BN  Cmcm (63) a  =  2.486 00 Å B 4c 0.500 00 0.833 30 0.750 00

b  =  4.305 88 Å N 4c 0.500 00 0.166 70 0.750 00

c  =  6.516 00 Å
ZnO Cmc21 (36) a  =  3.249 86 Å O 4a 0.500 00 0.833 30 0.617 50

b  =  5.628 92 Å Zn 4a 0.500 00 0.833 30 0.000 00

c  =  5.206 62 Å
MgSiO3   P21/c (14) a  =  9.384 47 Å Mg 4e 0.758 00 0.014 00 0.565 00

b  =  8.825 00 Å

O

Si

4e 0.758 00 0.653 00 0.533 00

c  =  5.188 00 Å 4e 0.895 00 0.187 00 0.844 00

β  =  103.3233° 4e 0.758 00 0.653 00 0.533 00
4e 0.876 00 0.659 00 0.264 00
4e 0.638 00 0.656 00 0.818 00
4e 0.623 00 0.502 00 0.325 00
4e 0.605 00 0.225 00 0.504 00
4e 0.947 00 0.161 00 0.183 00
4e 0.543 00 0.158 00 0.749 00

Figure 6.  Band structures of (a) Al, (b) Si, (c) C, and (d) GaAs.
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containing 2048 Si atoms using various cores. The speedup 
ratio and parallel efficiency as a function of the number of 
cores with respect to 32 cores are plotted in figure 7(b). The 
parallel efficiency reaches 75% for 256 processors, demon-
strating the strong parallel scalability of ARES for simulating 
large-scale systems.

The total energies for large supercell of Si, C, and Al con-
taining 2048, 3072, 2304, 3072, 4096, 6912, and 10192 atoms 
(corresponding to 8192, 12288, 9216, 12288, 12288, 20736 
and 30576 electrons, respectively) calculated using ARES are 
listed in table  3. The total energy differences between ARES 
and CASTEP software for Si, C and Al are 5.0, 12.0 and  

4.0 meV/atom, respectively. Note that the k-space representa-
tion equivalent direct simulation BvK supercells is employed in 
CASTEP and the plane-wave basis kinetic energy cutoff of 940, 
2600 and 940 eV are chosen for Si, C and Al to ensure that energy 
can converge to better than 1.0 meV/atom. The maximum itera-
tion steps to convergence are 18, 19, and 13 for Si, C, and Al, 
respectively. It is worth mentioning that a large-scale simulation 
of a supercell Al structure containing 10192 atoms not acces-
sible using eigenvector-based methods was performed by ARES 
and the total wall time for convergence of the electron density 
using 256 cores is 9.76 h. These results illustrate the superior 
performance of ARES for simulating large-scale systems.

Figure 7.  (a) Wall time per self-consistent step using the various cores as a function of the number of Al atoms. (b) Speedup ratio (black 
solid line) and parallel efficiency (red dashed line) as a function of the number of processors for Si supercell containing 2048 atoms.

Table 3.  Total wall time for ARES calculations on large Si, C, and Al supercell systems. Note that only the gamma point is used in ARES. 
The number of atoms and electrons in the systems are denoted by Natom and Ne, respectively. (Nx, Ny, Nz) is the size of the real-space grid. 
The subspace dimension is denoted by Ns. The grid spacings are 0.30, 0.15 and 0.37 Å for Si, C and Al systems, respectively.

System Natom(Ne) Nx Ny Nz Ns Steps Cores Time (h)

Si 2048 (8192) 104 104 104 4300 18 64 1.67
Si 3072 (12288) 104 104 160 6451 17 64 4.79
C 2304 (9216) 144 144 192 4618 18 256 2.33
C 3072 (12288) 144 192 192 6154 19 256 5.07
Al 4096 (12288) 175 96 96 6553 13 256 1.14
Al 6912 (20736) 132 144 144 11059 13 256 3.95
Al 10192 (30576) 154 160 144 16307 12 256 9.76

Figure 8.  Evolution of the energy difference (a) and maximum force (b) as functions of the number of L-BFGS steps during geometry 
relaxation for crystalline Al containing 108 atoms. The inset of (a) shows the evolution of the energy difference for the last few steps.
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To test the convergence of the geometrical structure relaxa-
tion of ARES for a large system, a crystalline structure con-
taining 108 Al atoms is used as a benchmark. The total energy 
and maximum force as a function of the number of L-BFGS 
steps during the geometrical structure relaxation are presented 
in figures 8(a) and (b), respectively. Only about 13 steps are 
required for the total energy and maximal force to converge 
to within 1 meV/atom and 0.01 eV Å−1, respectively. Thus, 
ARES yields fast convergence of geometrical structure relaxa-
tion for complex structures.

4.  Conclusion

The real-space finite-difference method combined with the 
Chebyshev filter subspace iteration was employed to solve 
the Kohn–Sham equation and was implemented in our ARES 
software package. The performance of ARES was thoroughly 
tested using static simulations of a wide variety of material 
systems containing thousands of atoms on a modest computer 
cluster. The high efficiency and scalability of the paralleled 
ARES software make it an efficient, portable, massively par-
allel computational tool for large-scale simulations of a wide 
range of materials.
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