1. Accelerating Structural Optimization through Fingerprinting Space Integration on the Potential Energy Surface
    Shuo Tao, Xuecheng Shao, and Li Zhu
    J. Phys. Chem. Lett. 15, 3185 (2024)
  2. Bound-State Breaking and the Importance of Thermal Exchange–Correlation Effects in Warm Dense Hydrogen
    Zhandos Moldabekov, Sebastian Schwalbe, Maximilian P Böhme, Jan Vorberger, Xuecheng Shao, Michele Pavanello, Frank R Graziani, and Tobias Dornheim
    J. Chem. Theory Comput. 20, 68 (2024)


  1. Machine Learning Electronic Structure Methods Based On The One-Electron Reduced Density Matrix
    Xuecheng Shao, Lukas Paetow, Mark E Tuckerman, and Michele Pavanello
    Nat. Commun. 14, 6281 (2023)
  2. Which Physical Phenomena Determine the Ionization Potential of Liquid Water?
    Jessica A. Martinez B, Lukas Paetow, Johannes Tölle, Xuecheng Shao, Pablo Ramos, Johannes Neugebauer, and Michele Pavanello
    J. Phys. Chem. B 127, 5470 (2023)
  3. Entropy is a good approximation to the electronic (static) correlation energy
    Jessica A Martinez B, Xuecheng Shao, Kaili Jiang, and Michele Pavanello
    J. Chem. Phys. 159, 191102 (2023)
  4. Imposing correct jellium response is key to predict the density response by orbital-free DFT
    Zhandos A MoldabekovXuecheng Shao, Michele Pavanello, Jan Vorberger, Frank Graziani, and Tobias Dornheim
    Phys. Rev. B 108, 235168 (2023)


  1. A symmetry-orientated divide-and-conquer method for crystal structure prediction
    Xuecheng Shao, Jian Lv, Peng Liu, Sen Shao, Pengyue Gao, Hanyu Liu, Yanchao Wang, and Yanming Ma
    J. Chem. Phys. 156, 014105 (2022)
  2. Density Embedding Method for Nanoscale Molecule–Metal Interfaces
    Xuecheng Shao, Wenhui Mi, and Michele Pavanello
    J. Phys. Chem. Lett. 13, 7147 (2022)
  3. Adaptive Subsystem Density Functional Theory
    Xuecheng Shao, Andres Cifuentes Lopez, Md Rajib Khan Musa, Mohammad Reza Nouri, and Michele Pavanello
    J. Chem. Theory Comput. 18, 6646 (2022)
  4. Many-body van der Waals interactions in wet MoS2 surfaces
    Xuecheng Shao, Alina Umerbekova, Kaili Jiang, and Michele Pavanello
    Electron. Struct. 4, 024001 (2022)
  5. Efficient time-dependent orbital-free density functional theory: Semilocal adiabatic response
    Kaili JiangXuecheng Shao, and Michele Pavanello
    Phys. Rev. B 106, 115153 (2022)
  6. Accelerating equilibration in first-principles molecular dynamics with orbital-free density functional theory
    Lenz Fiedler, Zhandos A MoldabekovXuecheng Shao, Kaili Jiang, Tobias Dornheim, Michele Pavanello, and Attila Cangi
    Phys. Rev. Research 4, 043033 (2022)


  1. DFTpy: An efficient and object-oriented platform for orbital-free DFT simulations
    Xuecheng Shao, Kaili Jiang, Wenhui Mi, Alessandro Genova, and Michele Pavanello
    WIREs Comput. Mol. Sci. 11, e1482 (2021)
  2. GGA-Level Subsystem DFT Achieves Sub-kcal/mol Accuracy Intermolecular Interactions by Mimicking Nonlocal Functionals
    Xuecheng Shao, Wenhui Mi, and Michele Pavanello
    J. Chem. Theory Comput. 17, 3455 (2021)
  3. Efficient DFT Solver for Nanoscale Simulations and Beyond
    Xuecheng Shao, Wenhui Mi, and Michele Pavanello
    J. Phys. Chem. Lett. 12, 4134 (2021)
  4. Revised Huang-Carter nonlocal kinetic energy functional for semiconductors and their surfaces
    Xuecheng Shao, Wenhui Mi, and Michele Pavanello
    Phys. Rev. B 104, 045118 (2021)
  5. eQE 2.0: Subsystem DFT Beyond GGA Functionals
    Wenhui MiXuecheng Shao, Alessandro Genova, Davide Ceresoli, and Michele Pavanello
    Comput. Phys. Commun. 269, 108122 (2021)
  6. Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory
    Kaili JiangXuecheng Shao, and Michele Pavanello
    Phys. Rev. B 104, 235110 (2021)
  7. Stability and mechanical properties of W_1-xMo_xB_4.2 (x=0.0-1.0) from first principles
    Weiguang Gong, Rui Xu, Xuecheng Shao, Quan Li, and Changfeng Chen
    Phys. Rev. Materials 5, 123606 (2021)


  1. Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density
    Zhiqiang Wang, Da Wang, Zheyi Zou, Tao Song, Dixing Ni, Zhenzhu Li, Xuecheng Shao, Wanjian Yin, Yanchao Wang, Wenwei Luo, Musheng Wu, Maxim Avdeev, Bo Xu, Siqi Shi, Chuying Ouyang, and Liquan Chen
    Natl. Sci. Rev. 7, 1768 (2020)
  2. An automated predictor for identifying transition states in solids
    Ketao Yin, Pengyue Gao, Xuecheng Shao, Bo Gao, Hanyu Liu, Jian Lv, S Tse John, Yanchao Wang, and Yanming Ma
    npj Comput. Mater. 6, 16 (2020)
  3. Pressure-stabilized divalent ozonide CaO3 and its impact on Earth’s oxygen cycles
    Yanchao Wang, Meiling Xu, Liuxiang Yang, Bingmin Yan, Qin Qin, Xuecheng Shao, Yunwei Zhang, Dajian Huang, Xiaohuan Lin, Jian Lv, Dongzhou Zhang, Huiyang Gou, Ho-kwang Mao, Changfeng Chen, and Yanming Ma
    Nat. Commun. 11, 4702 (2020)


  1. Structure evolution of chromium-doped boron clusters: toward the formation of endohedral boron cages
    Xuecheng Shao, Xin Qu, Siyu Liu, Lihua Yang, Jinghai Yang, Xiaohui Liu, Xin Zhong, Shuai Sun, G Vaitheeswaran, and Jian Lv
    RSC Adv. 9, 2870 (2019)
  2. Polyethylene Glycol–Na+ Interface of Vanadium Hexacyanoferrate Cathode for Highly Stable Rechargeable Aqueous Sodium-Ion Battery
    Ping Jiang, Zhenyu Lei, Liang Chen, Xuecheng Shao, Xinmiao Liang, Jun Zhang, Yanchao Wang, Jiujun Zhang, Zhaoping Liu, and Jiwen Feng
    ACS Appl. Mater. Interfaces 11, 28762 (2019)
  3. First-principles study of high-pressure phase stability and superconductivity of Bi_4I_4
    Shiyu Deng, Xianqi Song, Xuecheng Shao, Quan Li, Yu Xie, Changfeng Chen, and Yanming Ma
    Phys. Rev. B 100, 224108 (2019)
  4. Ab initio electronic structure calculations using a real-space Chebyshev-filtered subspace iteration method
    Qiang Xu, Sheng Wang, Lantian Xue, Xuecheng Shao, Pengyue Gao, Jian Lv, Yanchao Wang, and Yanming Ma
    J. Phys.: Condens. Matter 31, 455901 (2019)


  1. Large-scale ab initio simulations for periodic system
    Xuecheng Shao, Qiang Xu, Sheng Wang, Jian Lv, Yanchao Wang, and Yanming Ma
    Comput. Phys. Commun. 233, 78 (2018)
  2. Pressure-induced structural transitions and electronic topological transition of Cu2Se
    Yuhang Zhang, Xuecheng Shao, Yanbin Zheng, Limin Yan, Pinwen Zhu, Yan Li, and Huailiang Xu
    J. Alloys Compd. 732, 280 (2018)
  3. Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency
    Jian Lv, Meiling Xu, Shiru Lin, Xuecheng Shao, Xinyu Zhang, Yanhui Liu, Yanchao Wang, Zhongfang Chen, and Yanming Ma
    Nano Energy 51, 489 (2018)
  4. High-Pressure Evolution of Unexpected Chemical Bonding and Promising Superconducting Properties of YB6
    Jianyun Wang, Xianqi Song, Xuecheng Shao, Bo Gao, Quan Li, and Yanming Ma
    J. Phys. Chem. C 122, 27820 (2018)


  1. Pressure-induced electronic topological transitions in the charge-density-wave material In4Se3
    Yuhang Zhang, Liyan Song, Xuecheng Shao, Yan Li, Pinwen Zhu, Huailiang Xu, and Junyou Yang
    J. Alloys Compd. 715, 237 (2017)


  1. O(NlogN) scaling method to evaluate the ion–electron potential of crystalline solids
    Xuecheng Shao, Wenhui Mi, Qiang Xu, Yanchao Wang, and Yanming Ma
    J. Chem. Phys. 145, 184110 (2016)
  2. ATLAS: A real-space finite-difference implementation of orbital-free density functional theory
    Wenhui Mi, Xuecheng Shao, Chuanxun Su, Yuanyuan Zhou, Shoutao Zhang, Quan Li, Hui Wang, Lijun Zhang, Maosheng Miao, Yanchao Wang, and Yanming Ma
    Comput. Phys. Commun. 200, 87 (2016)


  1. Structure prediction of atoms adsorbed on two-dimensional layer materials: method and applications
    Bo Gao, Xuecheng Shao, Jian Lv, Yanchao Wang, and Yanming Ma
    J. Phys. Chem. C 119, 20111 (2015)
  2. Electronic Topological Transition in Ag2Te at High-pressure
    Yuhang Zhang, Yan Li, Yanmei Ma, Yuwei Li, Guanghui Li, Xuecheng Shao, Hui Wang, Tian Cui, Xin Wang, and Pinwen Zhu
    Sci. Rep. 5, 14681 (2015)